Publication Cover
Radiation Effects and Defects in Solids
Incorporating Plasma Science and Plasma Technology
Volume 179, 2024 - Issue 5-6
55
Views
1
CrossRef citations to date
0
Altmetric
Articles

The dependence of thermoluminescence and optically stimulated luminescence properties of LiMgPO4: Tb,Sm,B on maximum heating temperatures

, , , , , , & show all
Pages 591-604 | Received 01 Aug 2023, Accepted 04 Dec 2023, Published online: 21 Dec 2023

References

  • Bøtter-Jensen, L.; McKeever, S.W.S.; Wintle, A.G. Optically Stimulated Luminescence Dosimetry; Elsevier, 2003. doi:10.1016/B978-0-444-50684-9.X5077-6.
  • Zacharias, N.; Stuhec, M.; Knezevic, Z.; Fountoukidis, E.; Michael, C.T.; Bassiakos, Y. Low-Dose Environmental Dosimetry Using Thermo- and Optically Stimulated Luminescence. Nucl. Instrum. Methods. Phys. Res. A 2007, 580 (1 SPEC. ISS.), 698–701. doi:10.1016/j.nima.2007.05.125.
  • Akselrod, M.S.; Bøtter-Jensen, L.; McKeever, S.W.S. Optically Stimulated Luminescence and Its Use in Medical Dosimetry. Radiat. Meas. 2006, 41 (SUPPL. 1). doi:10.1016/j.radmeas.2007.01.004.
  • Yukihara, E.G.; Sawakuchi, G.O.; Guduru, S.; McKeever, S.W.S.; Gaza, R.; Benton, E.R.; Yasuda, N.; Uchihori, Y.; Kitamura, H. Application of the Optically Stimulated Luminescence (OSL) Technique in Space Dosimetry. Radiat. Meas. 2006, 41 (9–10), 1126–1135. doi:10.1016/j.radmeas.2006.05.027.
  • Akselrod, M.S.; Lucas, A.C.; Polf, J.C.; Mckeever, S.W.S. Optically Stimulated Luminescence of Al2O3. Radiat. Meas. 1998, 29, 391–399. doi:10.1016/S1350-4487(98)00061-4.
  • Jahn, A.; Sommer, M.; Henniger, J. OSL Efficiency for BeO OSL Dosimeters. Radiat. Meas. 2014, 71, 104–107. doi:10.1016/j.radmeas.2014.03.024.
  • Dhabekar, B.; Menon, S.N.; Alagu Raja, E.; Bakshi, A.K.; Singh, A.K.; Chougaonkar, M.P.; Mayya, Y.S. LiMgPO4: Tb,B - A New Sensitive OSL Phosphor for Dosimetry. Nucl. Instrum. Methods. Phys. Res. B 2011, 269 (16), 1844–1848. doi:10.1016/j.nimb.2011.05.001.
  • Marczewska, B.; Bilski, P.; Wróbel, D.; Kłosowski, M. Investigations of OSL Properties of LiMgPO4: Tb,B Based Dosimeters. Radiat. Meas. 2016, 90 (3), 265–268. doi:10.1016/j.radmeas.2016.02.004.
  • Kumar, M.; Dhabekar, B.; Menon, S.N., et al. Beta Response of LiMgPO4:Tb,B Based OSL Discs for Personnel Monitoring Applications. Radiat. Prot. Dosimetry 2013, 155 (4), 410–417. doi:10.1093/rpd/nct028.
  • Menon, S.N.; Dhabekar, B.; Raja, E.A.; Chougaonkar, M.P. Preparation and TSL Studies in Tb Activated LiMgPO4 Phosphor. Radiat. Meas. 2012, 47 (3), 236–240. doi:10.1016/j.radmeas.2011.12.013.
  • Palan, C.B.; Bajaj, N.S.; Soni, A.; Omanwar, S.K. Synthesis and Luminescence Properties of Tb3+-Doped LiMgPO4 Phosphor. Bull. Mater. Sci 2016, 39 (5), 1157–1163. doi:10.1007/s12034-016-1261-4.
  • Kulig, D.; Gieszczyk, W.; Bilski, P.; Marczewska, B.; Kłosowski, M. Thermoluminescence and Optically Stimulated Luminescence Studies on LiMgPO4 Crystallized by Micro Pulling Down Technique. Radiat. Meas. 2016, 85, 88–92. doi:10.1016/j.radmeas.2015.12.024.
  • Goñi, A.; Lezama, L.; Barberis, G.E.; Pizarro, J.L.; Arriortua, M.I.; Rojo, T. Magnetic Properties of the LiMPO, (M = Co, Ni) Compounds. J. Magn. Magn. Mater 1996, 64, 251–255. doi:10.1016/S0304-8853(96)00394-0.
  • Kulig (Wróbel), D.; Gieszczyk, W.; Bilski, P.; Marczewska, B.; Kłosowski, M. New OSL Detectors Based on LiMgPO4 Crystals Grown by Micro Pulling Down Method. Dosimetric Properties vs. Growth Parameters. Radiat. Meas. 2016, 90, 303–307. doi:10.1016/j.radmeas.2016.01.028.
  • Kulig, D.; Gieszczyk, W.; Marczewska, B.; Bilski, P.; Kłosowski, M.; Malthez, A.L.M.C. Comparative Studies on OSL Properties of LiMgPO4:Tb,B Powders and Crystals. Radiat. Meas. 2017, 106, 94–99. doi:10.1016/j.radmeas.2017.04.004.
  • Guo, J.; Tang, Q.; Zhang, C.; Luo, D.; Liu, X. Optically Stimulated Luminescence (OSL) of LiMgPO4:Tm,Tb Phosphor. J. Rare Earths 2017, 35 (6), 525–529. doi:10.1016/S1002-0721(17)60943-8.
  • Gai, M.; Chen, Z.; Fan, Y.; Wang, J. Synthesis and Luminescence in LiMgPO4:Tb,Sm,B Phosphors with Possible Applications in Real-Time Dosimetry. J. Rare Earths 2013, 31 (6), 551–554. doi:10.1016/S1002-0721(12)60318-4.
  • Fu, L.; Tang, K.; Cui, H.; Wang, Z.; Li, Z.; Fan, H.; Zhang, S.; Zhou, M. The Effect of Boron co-Doping on Thermoluminescence and Optically Stimulated Luminescence Properties of LiMgPO4:Tb,Sm. Radiat. Meas. 2023, 167, 106986. doi:10.1016/j.radmeas.2023.106986.
  • Rawat, N.S.; Dhabekar, B.; Muthe, K.P.; Koul, D.K.; Datta, D. Detection of sub Micro Gray Dose Levels Using OSL Phosphor LiMgPO4:Tb,B. Nucl. Instrum. Methods. Phys. Res. B 2017, 397, 27–32. doi:10.1016/j.nimb.2017.02.035.
  • Guo, J.; Jian, C.; Zeng, C.; Xiong, Z.; Wanga, L.; Zhou, D. Dosimetric and Spectroscopic Study of LiMgPO4 Doped with Tm3+ and Er3+. RSC Adv. 2023, 13, 4949–4957. doi:10.1039/d2ra07109f.
  • Yin, Z.; Chen, H.; Feng, G.; Jing, Q.; Muhetaier, M. Study on the Thermoluminescence and Optically Stimulated Luminescence of LiMgPO4:Dy Phosphors Synthesized by Different Methods. Appl. Radiat. Isot. 2023, 201, 110990. doi:10.1016/j.apradiso.2023.110990.
  • Menon, S.N.; Dhabekar, B.S.; Kadam, S.; Koul, D.K. Fading Studies in LiMgPO4:Tb,B and Synthesis of new LiMgPO4 Based Phosphor with Better Fading Characteristics. Nucl. Instrum. Methods Phys. Res. B 2018, 436, 45–50. doi:10.1016/j.nimb.2018.08.052.
  • Kumar Tamrakar, R.; Bisenb, D.P.; Upadhyay, K. Effect of Annealing on Down-Conversion Properties of Monoclinic Gd2O3:Er3+ Nanophosphors. Luminescence 2015, 30 (6), 812–817. doi:10.1002/bio.2824.
  • Tamrakar, R.K.; Bisen, D.P.; Bramhe, N. Influence of Er3+ Concentration on the Photoluminescence Characteristics and Excitation Mechanism of Gd2O3:Er3+ Phosphor Synthesized via a Solid-State Reaction Method. Luminescence 2015, 30 (5), 668–676. doi:10.1002/bio.2803.
  • Kumar Tamrakar, R.; Bisen, D.P.; Upadhyay, K.; Sahu, I.P.; Sahu, M. The Down Conversion Properties of a Gd2O3:Er3+ Phosphor Prepared via a Combustion Synthesis Method. RSC Adv. 2016, 6, 92360–92370. doi:10.1039/c6ra16286j.
  • Upadhyay, K.; Tamrakar, R.K.; Dubey, V. High Temperature Solid State Synthesis and Photoluminescence Behavior of Eu3+ Doped GdAlO3 Nanophosphor. Superlattices Microstruct. 2014. doi:10.1016/j.spmi.2014.11.030.
  • Upadhyay, K.; Kumar Tamrakar, R.; Asthana, A. Investigation of a Thermoluminescence Response and Trapping Parameters and Theoretical Model to Explain Concentration Quenching for Yb3+-Doped ZrO2 Phosphors Under UV Exposure. Bull. Mater. Sci 2019, 42, 249. doi:10.1007/s12034-019-1845-x.
  • Kumar Tamrakar, R.; Upadhyay, K.; Bisen, D.P. 3T1R Model and Tuning of Thermoluminescence Intensity by Optimization of Dopant Concentration in Monoclinic Gd2O3:Er3+,Yb3+ co-Doped Phosphor. Phys. Chem. Chem 2017, 19 (22), 14680–14694. doi:10.1039/c7cp01424d.
  • Kumar Tamrakar, R.; Prasad Bisen, D.; Upadhyay, K. Photoluminescence Behavior of ZrO2:Eu3+ with Variable Concentration of Eu3+ Doped Phosphor. J. Radiat. Res. Appl. Sci 2015, 8, 11–16. doi:10.1016/j.jrras.2014.10.004.
  • Ha, V.T.T.; Do, T.A.T.; Nguyen, T.T.; Ung, T.D.T. Luminescence and Thermoluminescence of Er3+-Doped CaF2 Nanomaterials. Radiat. Eff. Defects Solids 2023, 178 (3–4), 442–455. doi:10.1080/10420150.2022.2150972.
  • Singh, V.S.; Dhakate, S.R.; Belsare, P.D.; Nafdey, R.; Moharil, S.V. Investigating Photoluminescence in Gd3+ Activated Pyrochlore-Type Fluoro-Aluminates. Radiat. Eff. Defects Solids 2023, 178 (9–10), 1159–1172. doi:10.1080/10420150.2023.2234066.
  • Nafdey, R.A.; Sharma, K.V.; Moharil, S.V.; Tumram, P.V. Luminescence of Sr6YAl(BO3)6 Activated with Tb3+ and Gd3+. Radiat. Eff. Defects Solids 2023, 178 (9–10), 1173–1186. doi:10.1080/10420150.2023.2235628.
  • Warutkar, G.N.; Ugemuge, N.S.; Sharma, K.; Nafdey, R.; Moharil, S.V. Nd3+ Emission in the Garnet Structure of LiCa3ZnV3O12 Phosphor. Radiat. Eff. Defects Solids 2023. doi:10.1080/10420150.2023.2258435.
  • Sandeva, I.; Spasevska, H.; Ginovska, M.; Stojanovska-Georgievska, L.; Masic, S. Light-induced Fading of the Photostimulated Luminescence and Thermoluminescence for Irradiated Silicate Samples. Radiat. Eff. Defects Solids 2023, 178, 1–10. doi:10.1080/10420150.2022.2148248.
  • Xu, C.; Yu, S.; Shi, L.; Zhang, Y.; Li, Q. A New Insight Into the Mechanism of Persistent Luminescence Phosphors SrS: Eu2+, Pr3+. Radiat. Eff. Defects Solids 2023, 178, 898–911. doi:10.1080/10420150.2023.2195652.
  • Singh, V.S.; Dhakate, S.R.; Belsare, P.D.; Nafdey, R.; Moharil, S.V. Investigating Photoluminescence in Gd3+ Activated Pyrochlore-Type Fluoro-Aluminates. Radiat. Eff. Defects Solids 2023, 178, 1159–1172. doi:10.1080/10420150.2023.2234066.
  • Al-Kotb, M.S.; El-Kinawy, M.; El-Faramawy, N.; Halwar, D.K.; Chopra, V.; Dhoble, S.J. Thermoluminescence Properties of Er-Doped Borophosphate Glass for Beta Radiation. Radiat. Eff. Defects Solids 2023, 178, 376–392. doi:10.1080/10420150.2022.2148249.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.