Publication Cover
Ichnos
An International Journal for Plant and Animal Traces
Volume 29, 2022 - Issue 2
555
Views
5
CrossRef citations to date
0
Altmetric
Articles

Tooth marks, gnaw marks, claw-marks, bite marks, scratch marks, etc: terminology in ichnology

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Alpert, S.P. (1976). Trilobite and star-like trace fossils from the White-Inyo Mountains, California. Journal of Paleontology, 50, 226–239.
  • Andrés, M., Gidna, A.O., Yravedra, J., & Domínguez-Rodrigo, M. (2012). A study of dimensional difference of tooth marks (pits and scores) on bones modified by small and large carnivores. Archaeological and Anthropological Sciences, 4(3), 209–219.
  • Ariazza, M.C., Yravedra, J., Domínguez-Rodrigo, M., Mate-González, M.A., Vargas, E.G., Palomeque-González, J.F., Aramendi, J., González-Aguilera, & Baquedano, E. (2017). On applications of micro-photogrammetry and geometric morphometrics to studies of tooth mark morphology: The modern Olduvai Carnivore Site (Tanzania). Palaeogeography, Palaeoclimatology, Palaeoecology, 488, 103–122.
  • Arman, S. D., & Prideaux, G. J. (2016). Behaviour of the Pleistocene marsupial lion deduced from claw marks in a southwestern Australian cave. Scientific Reports, 6(1), 21372–21378. p.
  • Bergstrom, J. (1976). Organization, life and systematics of trilobites. Fossils and Strata, 2, 1–69.
  • Birkenmajer, K., & Bruton, D.L. (1971). Some trilobite resting and crawling traces. Lethaia, 4(3), 303–319.
  • Blumenschine, R.J., & Selvaggio, M.M. (1988). Percussion marks on bone surfaces as a new diagnostic of hominid behaviour. Nature, 333(6175), 763–765.
  • Blumenschine, R.J., Marean, C.W., & Capaldo, S.D. (1996). Blind tests of inter-analyst correspondence and accuracy in the identification of cut marks, percussion marks, and carnivore tooth marks on bone surfaces. Journal of Archaeological Science, 23(4), 493–507.
  • Boaz, N.T., Ciochon, R.L., Qinqi, X., & Jinyi, L. (2000). Large mammalian carnivores as a taphonomic factor in the bone accumulation at Zhoukoudian. Acta Anthropologica Sinica, Supplement to, 19, 224–234.
  • Boessenecker, R.W., & Perry, F.A. (2011). Mammalian bite marks on juvenile fur seal bones from the Late Neogene Purisima Formation of central California. PALAIOS, 26(2), 115–120.
  • Bosio, G., Collareta, A., Di Celma, C., Lambert, O., Marx, F.G., Gioncada, K., Malinverno, E., Malca, R.V., Urbina, M., & Bianucci, G. (2021). Taphonomy of marine vertebrates of the Pisco Formation (Miocene, Peru): Insights into the origin of an outstanding Fossil-Laggerstätte. PLOS One, 16, e0254395.
  • Brandt, D.S., Meyer, D.L., & Lask, P.B. (1995). Isotelus (Trilobita) “hunting burrow” from Upper Ordovician strata, Ohio. Journal of Paleontology, 69(6), 1079–1083.
  • Bromley, R.G., Pemberton, S.G., & Rahmani, R. (1984). A cretaceous woodground, the teredolites ichnofacies. Journal of Paleontology, 58, 488–498.
  • Brown, C.M., Tanke, D.H., & Hone, D.W.E. (2021). Rare evidence for ‘gnawing-like’ behavior in a small-bodied theropod dinosaur. PeerJ, 9, e11557.
  • Bunn, H.T. (1981). Archaeological evidence for meat-eating by Plio-Pleistocene hominids from Koobi Fora and Olduvai Gorge. Nature, 291(5816), 574–577.
  • Bunn, H.T. (1991). A taphonomic perspective on the archaeology of human remains. Annual Review of Anthropology, 20(1), 433–446.
  • Bunn, H.T. (2006). Meat made us human. In P.S. Unger (Ed.), Evolution of the human diet: The known, the unknown, and the unknowable. Oxford University Press (pp.191–211).
  • Chambers, W. (1903). In A. Findlater (Ed.), Chambers’s etymological dictionary of the English language (pp. 628).
  • Cloud, P.E., & Nelson, C.A. (1966). Phanerozoic-cryptozoic and related transitions: New evidence. Science, 154(3750), 766–770.
  • Collareta, A., Lambert, O., Landini, W., Di Celma, C., Malinverno, E., Varas-Malca, R., Urbina, M., & Bianucci, G. (2017). Did the giant extinct shark Carchoclesmegalodon target small prey? Bite marks on marine mammal remains from the late Miocene of Peru. Palaeogeography, Palaeoclimatology, Palaeoecology, 469, 84–91.
  • Collinson, M.E., & Hooker, J.J. (2000). Gnaw marks on Eocene seeds: Evidence for early rodent behaviour. Palaeogeography, Palaeoclimatology, Palaeoecology, 157(1–2), 127–149.
  • Crimes, T.P. (1970). Trilobite tracks and other trace fossils from the Upper Cambrian of North Wales. Geological Journal, 3, 448–457.
  • Crimes, T.P. (1975a). Trilobite traces from the Lower Tremadoc of Tortworth. Geological Magazine, 112(1), 33–46.
  • Crimes, T.P. (1975b). The stratigraphic significance of trace fossils. In R.W. Frey (Ed.), The study of trace fossils. Springer Verlag (pp. 109–130).
  • Crimes, T.P. (1975c). The production and preservation of trilobite resting and furrowing traces. Lethaia, 8(1), 35–48.
  • Cruikshank, A.R.I. (1986). Archosaur predation on an east African Middle Triassic dicynodont. Palaeontology, 29, 415–422.
  • Cruz-Uribe, K., & Klein, R.G. (1994). Chew marks and cut marks on animal bones from the Kastelberg B and dune field midden later Stone Age sites, Western Cape Province, South Africa. Journal of Archaeological Science, 21(1), 35–49.
  • Dalla Vecchia, F. M. (1999). A sauropod footprint in a limestone block from the Lower Cretaceous of northeastern Italy. Ichnos, 6(4), 269–275.
  • Dawson, J.W. (1890). On burrows and tracks of invertebrate animals in Paleozoic rocks, and other markings. Quarterly Journal of the Geological Society of Society, 46(1-4), 595–618.
  • Delaney‐Rivera, C., Plummer, T.W., Hodgson, J.A., Forrest, F., Hertel, F., & Oliver, J.S. (2009). Pits and pitfalls: Taxonomic variability and patterning in tooth mark dimensions. Journal of Archaeological Science, 36, 2597–2608.
  • Denys, C., Viriot, L., Daams, R., Pelaez-Campomanes, P., Vignaud, P., Andossa, L., & Brunet, M. (2003). A new Pliocene xerine sciurid (Rodentia) from Kossom Bougoudi. Journal of Vertebrate Paleontology, 23(3), 676–687.
  • Díaz-Martinez, I., Suarez-Hernando, O., Martinez-Garcia, B.M., Cruz Larrasoaña, J., & Murelaga, X. (2016). First bird footprints from the lower Miocene Lerín formation, Ebro Basin, Spain. Palaeontologia Electronica, 19.1.7A, 1–15.
  • Dominguez-Rodrigo, Egeland, C.P., & Pickering, T.R. (2007). Equifinality in carnivore tooth marks and the extended concept of archaeological palimpsests: Implications for models of passive scavenging in early hominids. In T.R. Pickering, K. Schick & N. Toth (Eds.), Breathing life into fossils: Taphonomic studies in honor of C.K. (Bob) Brain (pp. 255–267). Stone Age Institute Press.
  • Eberth, D., Rogers, R.R., & Fiorillo, A.R. (2007). Chapter 5: A practical approach to the study of bonebeds. In R.R. Rogers, D.A. Eberth & A.R. Fiorillo (Eds.), Bonebeds: Genesis, analysis and paleobiological significance. University of Chicago Press (pp. 265–331).
  • Ekdale, A.A., Bromley, R.G., & Pemberton, S.G. (1984). Ichnology: The use of trace fossils in sedimentology and stratigraphy (Vol. 15, pp. 317). SEPM Short Course.
  • Erickson, G. M., Kirk, S. D. V., Su, J., Levenston, M. E., Caler, W. E., & Carter, D. R. (1996). Bite-force estimation for Tyrannosaurus rex from tooth-marked bones. Nature, 382(6593), 706–708.
  • Falk, A. R., Hasiotis, S. T., & Martin, L. D. (2010). Feeding traces associated with bird tracks from the Lower Cretaceous Haman Formation, Republic of Korea. Palaios, 25(11), 730–741.
  • Feichtinger, I., Fritz, I., & Göhlich, U.B. (2021). Tiger shark feeding on sirenian – First fossil evidence from the Middle Miocene of the Styrian Basin (Austria). Historical Biology, 34, 193–200.
  • Fernandez Jalvo, Y., & Andrews, P. (2016). Atlas of Taphonomic identifications: 1001+ images of fossil and recent mammal bone modifications. Vertebrate Paleobiology and Paleoanthropology Series (358 pages). Springer.
  • Fiorillo, A.R. (1984). An introduction to the identification of trample marks. Taphonomy: Current Research, 1, 47.
  • Fiorillo, A.R. (1989). An experimental study of trampling: Implications for the fossil record. In R. Bonnischen, & M.H. Sorg (Eds.), Bone modification. University of Maine Center for the study of the first Americans (pp. 61–71).
  • Fiorillo, A.R. (1991). Taphonomy and depositional setting of careless creek quarry (Judith River Formation), south-central Montana. Palaeogeography, Palaeoclimatology, Palaeoecology, 81(3–4), 281–311.
  • Frey, R.W. (1973). Concepts in the study of biogenic sedimentary structures. Journal of Sedimentary Petrology, 43, 6–19.
  • Fürsich, F.T. (1974). Ichnogenus Rhizocorallium. Paläontologische Zeitschrift, 48(1–2), 16–28.
  • Fürsich, F.T. (1975). Trace fossils as indicators in the Corallian of England and Normandy. Lethaia, 8(2), 151–172.
  • Fürsich, F.T., Kennedy, W.J., & Palmer, T.J. (1981). Trace fossils at a regional discontinuity surface: The Austin/Taylor (Upper Cretaceous) contact in central Texas. Journal of Paleontology, 55, 537–551.
  • Gebo, D.L., & Simons, E.L. (1984). Puncture marks on early African anthropoids. American Journal of Physical Anthropology, 65(1), 31–35.
  • Gifford-Gonzalez, D. (1989). Ethnographic analogues for interpreting modified bones: Some cases from East Africa. In R. Bonnischsen, & M.H. Sorg (Eds.), Bone modification: Center for the study of the first Americans. University of Maine (pp. 179–246).
  • Gingras, M.K., Hubbard, S.M., Pemberton, S.G., & Saunders, T. (2000). The significance of Pleistocene Psilonichnus at Willapa Bay, Washington. Palaios, 15, 142–151.
  • González, V.T., Ortega Ojeda, F., Fonseca, G.M., García-Ruiz, C., & Pérez-Lloret, P. (2021). Analysis of tooth mark patterns on bone remains caused by wolves (Canis lupus) and domestic dogs (Canis lupus familiaris) for taxonomic identification: A scoping review focused on their value as a forensic tool. Applied Animal Behaviour Science, 105356, 12 p.
  • Haglund, W.D., Reay, D.T., & Swindler, D.R. (1988). Tooth mark artifacts and survival of bones in animal scavenged human skeletons. Journal of Forensic Sciences, 4, 985–997.
  • Hallam, A. (1975). Preservation of Trace fossils. In R.W. Frey (Ed.), The study of trace fossils. Springer Verlag (pp. 55–63).
  • Hasiotis, S. T., & Mitchell, C. E. (1993). A comparison of crayfish burrow morphologies: Triassic and Holocene fossil, paleo- and neo-ichnological evidence, and the identification of their burrowing signatures. Ichnos, 2(4), 291–314. v.
  • Hasiotis, S. T., Wellner, R. W., Martin, A., & Demko, T. M. (2004). Vertebrate burrows from Triassic and Jurassic continental deposits of North America and Antarctica: Their paleoenvironmental and paleoecological significance. Ichnos, 11(1–2), 103–124.
  • Hasiotis, S.T., Fiorillo, A.R., & Hanna, R.R. (1999). Preliminary report on borings in Jurassic dinosaur bones: Evidence for invertebrate-vertebrate interactions. Utah Geological Survey, 99(1), 193–200.
  • Haynes, G. (1983). A guide for differentiating mammalian carnivore taxa responsible for gnaw damage to herbivore limb bones. Paleobiology, 9(2), 164–172.
  • Hodgson, J.A., Allmon, W.D., Sherpa, J.M., & Nester, P.L. (2008). Chapter 18. Geology and taphonomy of the North Java Mastodon Site, Wyoming County, New York. In W.D. Allmon & P.L. Nester (Eds.), Mastodon paleobiology, taphonomy, and paleoenvironment in the late pleistocene of New York state. Studies on the Hyde Park, Chemung and North Java Sites (Vol. 61, pp. 385–415). Palaeontographica Americana.
  • Hone, D.W.E, & Chure, D.J. (2018). Difficulties in assigning trace makers from theropodan bite marks: An example from a young diplodocoid sauropod. Lethaia, 51, 456–466.
  • Hunt, A.P., & Lucas, S.G. (2021). The ichnology of vertebrate consumption: Dentalites, gastroliths and bromalites. New Mexico Museum of Natural History & Science Bulletin, 87, 226.
  • Hunt, A.P., Lucas, S.G., & Klein, H. (2018). Late Triassic nonmarine vertebrate and invertebrate trace fossils and the pattern of the Phanerozoic record of vertebrate trace fossils. In L.H. Tanner (Ed.), The Late Triassic world. Topics in geobiology (Vol. 46, pp. 447–543). Springer.
  • Ireland, R., & Young, C.A. (2020). A dictionary of dentistry (2nd ed.). Oxford University Press, Online resource.
  • Ireland, R.J., Pollard, J.E., Steel, R.J., & Thompson, D.B. (1978). Intertidal sediments and trace fossils from the Waterstones (Scythian-Anisian?) at Daresbury, Cheshire. Proceedings of the Yorkshire Geological Society (Vol. 41, pp. 399–436).
  • Ishigaki, S. (2010). Theropod trampled bedding plane with laboring trackways from the Upper Cretaceous Abdrant Nuru fossil site. Mongolia. Hayashibara Museum of Natural Sciences Research Bulletin, 3, 133–141.
  • Jacobsen, A.R., & Bromley, R. G. (2009). New ichnotaxa based on tooth impressions on dinosaurs and whale bones. Geological Quarterly, 53, 373–382.
  • Kappus, E.J., & Lucas, S.G. (2019). Ichnologic note: A new ichnospecies of Cardioichnus from the Cretaceous (Albian) of New Mexico. Ichnos, 26(2), 127–133.
  • Krejci-Graf, K. (1932). Definition der BegriffeMarken, Spuren, Fährten, Bauten, Hieroglyphen und Fucoiden. Senckenbergiana, 14, 19–39.
  • Lee, Y.-N., Azuma, Y., Lee, H.-J., Shibata, M., & Lü, J. (2009). The first pterosaur trackways from Japan. Cretaceous Research.
  • Maté González, M.A., Palomeque-González, J.F., Yravedra, J., González-Aguilera, D., & Domínguez-Rodrigo, M. (2018). Micro-photogrammetric and morphometric differentiation of cut marks on bones using metal knives, quartzite, and flint flakes. Archaeological and Anthropological Sciences, 10(4), 805–816.
  • Maté González, M.A., Yravedra, J., González-Aguilera, D., Palomeque-González, J.F., & Domínguez-Rodrigo, M. (2015). Micro-photogrammetric characterization of cut marks on bones. Journal of Archaeological Science, 62, 128–142.
  • McLean, R.F. (1967). Erosion of burrows in beachrock by the tropical sea urchin Echinometra lucuntur. Canadian Journal of Zoology, 45(4), 586–588.
  • McSparran, F. (2006). The middle English compendium. University of Michigan https://quod.lib.umich.edu/m/middle-english-dictionary/dictionary/MED26927.
  • Mikuláš, R., Kadlecová, E., Fejfar, O., & Dvořák, Z. (2006). Three new ichnogenera of biting and gnawing traces on reptilian and mammalian bones: A case study from the Miocene of the Czech Republic. Ichnos, 13(3), 113–127.
  • Noe-Nygaard, N. (1989). Man-made trace fossils on bone. Human Evolution, 4(6), 461–491.
  • OED Online. (2021). Oxford University Press, September 2021. Web. 20 October 2021.
  • Pemberton, S.G., Kobluk, D.R., Yeo, R.K., & Risk, M.J. (1980). The boring Trypanites at the Silurian-Devonian disconformity in southern Ontario. Journal of Paleontology, 54, 1258–1260.
  • Plummer, T.W., & Stanford, C.B. (2015). Analysis of a bone assemblage made by chimpanzees at gombe national park, Tanzania. Journal of Human Evolution, 39L, 345–365.
  • Pretty, I.A., & Sweet, D. (2001). The scientific basis for human bitemark analyses: A critical review. Science & Justice, 41(2), 85–92.
  • Reisz, R.R., & Tsuji, L.A. (2006). An articulated skeleton of Varanops with bite marks: The oldest known evidence of scavenging among terrestrial vertebrates. Journal of Vertebrate Paleontology, 26(4), 1021–1023.2.0.CO;2]
  • Rindsberg, A.K., & Martin, A.J. (2003). Arthrophycus in the Silurian of Alabama (USA) and the problem of compound trace fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 192(1–4), 187–219.
  • Rodríguez-Tovar, F.J., & Pérez-Valera, F. (2008). Trace fossil Rhizocorallium from the Middle Triassic of the Betic Cordillera, southern Spain: Characterization and environmental implications. Palaios, 23, 78–86.
  • Rothschild, B.M., Bryant, B., Hubbard, C., Tuxhorn, K., Kilgore, G.P., Martin, L., & Naples, V. (2013). The power of the claw. PLOS One, 8(9), e73811–4.
  • Seilacher, A. (1982). Distinctive features of sandy tempestites. In G. Einsele, & A. Seilacher (Eds.), Cyclic and event stratification (pp. 333–349).
  • Seilacher, A. (1985). Trilobite palaeobiology and substrate relationships. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 76(2–3), 231–237.
  • Simpson, G.G. (1941). Discovery of Jaguar bones and footprints in a cave in Tennessee. American Museum Novitates, 1131, 12. p.
  • Smith, C.F. (1948). A burrow of the Pocket-Gopher (Geomys bursarius) in Eastern Kansas. Transactions of the Kansas Academy of Science (1903), 51(3), 313–315.
  • Stevens, G.C., & Wakely, J. (1993). Diagnostic criteria for identification of seashell as a trephination implement. International Journal of Osteoarchaeology, 3(3), 167–176.
  • Stevenson, A. (2010). Oxford dictionary of English (3rd ed.) Oxford University Press online edition.
  • Tedeschi-Oliveira, S.V., Triguerio, M., Oliveira, R.N., & Melani, R.F.H. (2011). Intercanine distance in the analysis of bite marks: A comparison of human domestic dog dental arches. Journal of Forensic Odonto-Stomatology, 29, 39–46.
  • Vallon, L.H., Rindsberg, A.k., & Martin, A.J. (2015). The use of the terms trace, mark and structure. Annales Societatis Geologorum Poloniae, 85, 527–528.
  • Vialov, O.S., & Nessov, L.A. (1974). Postmortem injuries off the shells of some early cretaceous turtles by bone damaging organisms. Paleontologicheskiij Sbornik, 11, 99–103 (in Russian).
  • Wood, A. E. (1952). Tooth-marks on bones of the Oreleton Farms Mastodon. The Ohio Journal of Science, 52, 27–28.
  • Young, A., Stillman, R., Smith, M.J., & Korstjens, A.H. (2015). Scavenger species-typical alteration to bone: Using bite mark dimensions to identify scavengers. Journal of Forensic Sciences, 60(6), 1426–1436.
  • Zonneveld, J.-P., Gunnell, G.F., Miller, E.R., & Korany, M. (2022). Ectoparasite borings in Early Miocene turtle and tortoise shell: Moghra Formation, Wadi Moghra Formation, Wadi Moghra, Egypt. Journal of Paleontology, 96, 304–322.
  • Zonneveld, J.-P., Pemberton, S.G., Saunders, T.D.A., & Pickerill, R.K. (2002). Large, robust Cruziana from the Middle Triassic of northeastern British Columbia: Ethologic, biostratigraphic and paleobiologic significance. Palaios, 17(5), 435–448.
  • Zonneveld, J.-P., Zaim, Y., Rizal, Y., Ciochon, R.L., Bettis, E.A., III,., & Aswan Gunnell, G.F. (2011). Oligocene shorebird footprints, Kandi, Ombilin Basin, Sumatra. Ichnos, 18, 221–227.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.