226
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Bioturbation changing porosity, permeability, and fracturability in chalk? Insights from an Upper Cretaceous chalk reservoir (Buda Formation, Texas, USA)

ORCID Icon, , , , , & show all

References

  • Abdassah, D., & Ershaghi, I. (1986). Triple-porosity systems for representing naturally fractured reservoirs. SPE Formation Evaluation, 1(02), 113–127.
  • Abdlmutalib, A. J., Ayranci, K., Yassin, M. A., Hussaini, S. R., Abdullatif, O. A., & Humphrey, J. D. (2022). Impact of sedimentary fabrics on small-scale permeability variations within fine-grained sediments: Early Silurian Qusaiba Member, Northern Saudi Arabia. Marine and Petroleum Geology. 139, 105607.
  • Aboubacar, M. S. I., & Cai, Z. (2020). A quadruple-porosity model for consistent petrophysical evaluation of naturally fractured vuggy reservoirs. SPE Journal, 25(05), 2678–2693.
  • Aguilera, R. F., & Aguilera, R. (2004). A triple porosity model for petrophysical analysis of naturally fractured reservoirs. Petrophysics, 45(2), 157–166.
  • Alqubalee, A., Muharrag, J., Salisu, A. M., & Eltom, H. (2022). The negative impact of Ophiomorpha on reservoir quality of channelized deposits in mixed carbonate siliciclastic setting: The case study of the Dam Formation, Saudi Arabia. Marine and Petroleum Geology, 140, 105666.
  • Baniak, G. M., Gingras, M. K., & Pemberton, S. G. (2013). Reservoir characterization of burrow-associated dolomites in the Upper Devonian Wabamun Group, Pine Creek gas field, Central Alberta, Canada. Marine and Petroleum Geology, 48, 275–292.
  • Baniak, G. M., La Croix, A. D., Polo, C. A., Playter, T. L., Pemberton, S. G., & Gingras, M. K. (2014). Associating X-Ray Microtomography with permeability contrasts in bioturbated media. Ichnos, 21(4), 234–250.
  • Baniak, G. M., La Croix, A. D., & Gingras, M. K. (2022). Recent advancements in characterizing permeability and porosity distributions in bioturbated flow media. Earth-Science Reviews, 232, 104162.
  • Baniak, G. M., Gingras, M. K., Burns, B. A., & Pemberton, S. G. (2015). Petrophysical characterization of bioturbated sandstone reservoir facies in the Upper Jurassic Ula Formation, Norwegian North Sea, Europe. Journal of Sedimentary Research, 85(1), 62–81.
  • Bai, M. (2016). Why are brittleness and fracability not equivalent in designing hydraulic fracturing in tight shale gas reservoirs. Petroleum, 2(1), 1–19.
  • Ben-Awuah, J., & Padmanabhan, E. (2015). Effect of bioturbation on reservoir rock quality of sandstones: A case from the Baram Delta, offshore Sarawak, Malaysia. Petroleum Exploration and Development, 42(2), 223–231.
  • Bednarz, M., & McIlroy, D. (2012). Effect of phycosiphoniform burrows on shale hydrocarbon reservoir quality. AAPG Bulletin, 96(10), 1957–1980.
  • Bjørlykke, K., & Høeg, K. (1997). Effects of burial diagenesis on stresses, compaction and fluid flow in sedimentary basins. Marine and Petroleum Geology, 14(3), 267–276.
  • Blouet, J. P., Wetzel, A., & Ho, S. (2021). Fluid conduits formed along burrows of giant bivalves at a cold seep site, Sounthern Taiwan. Marine and Petroleum Geology, 131, 105123.
  • Bradley, R. G., & Boghici, R. (2018). GAM run 16-033 MAG: Modeled available groundwater aquifers in groundwater management area. Texas Water Development Board Groundwater Division, 512, 32. http://www.twdb.texas.gov/groundwater/docs/GAMruns/GR16-033_MAG.pdf
  • Bromley, R. G. (1996). Trace fossils. Biology, taphonomy and applications (p. 361). Chapman & Hall.
  • Buatois, L. A., & Mángano, M. G. (2011). Ichnology: Organism-substrate interactions in space and time (p. 358). Cambridge Press University.
  • Buatois, L. A., Mángano, M. G., & Carr, T. R. (1999). Sedimentology and ichnology of Paleozoic estuarine and shoreface reservoirs, Morrow Sandstone, Lower Pennsylvanian of Southwest Kansas, USA. Current Research in Earth Sciences, 241, 1–35.
  • Chandra, V., Petrovic, A., Khanna, P., Ramdani, A. I., Yalcin, B., Vahrenkamp, V., & Finkbeiner, T. (2021). Impact of depositional and diagenetic features on petrophysical and rock mechanical properties in Arab-D reservoir equivalent upper Jubaila Formation, Saudi Arabia. Marine and Petroleum Geology, 129, 105076.
  • Che, J., & Dorgan, K. M. (2010). It’s tough to be small: Dependence of burrowing kinematics on body size. The Journal of Experimental Biology, 213(Pt 8), 1241–1250.
  • Corcoran, P. L. (2008). Ordovician paleotopography as evidenced from original dips and differential compaction of dolostone and shale unconformably overlying Precambrian basement on Manitoulin Island, Canada. Sedimentary Geology, 207(1–4), 22–33.
  • Cunningham, K. J., Sukop, M. C., Huang, H., Alvarez, P. F., Curran, H. A., Renken, R. A., & Dixon, J. F. (2009). Prominence of ichnologically influenced macroporosity in the karst Biscayne aquifer: Stratiform ‘super-K’ zones. Geological Society of America Bulletin, 121, 164–180. https://doi.org/10.1130/B26392.1
  • Curran, H. A., & Cunningham, K. J. (2013). Ichnogenic megaporosity and permeability in carbonate aquifers and reservoirs: Definitions and examples. Association of Petroleum Geologists Search and Discovery Article #50866.
  • Dabek, L. B., & Knepp, R. (2011). Bioturbation and its effects on permeability in wave-dominated shoreface rocks of the spring canyon member, blackhawk formation. Association of Petroleum Geologists Search and Discovery.
  • Davis, G., Wilcox, G., Amone, M., & Bruingtion, S. (2016). Rejuvenating the Buda Limestone reservoir in Texas by using crude oil and nitrogen injection in underbalanced regime: Case history [Paper presentation]. Society of Petroleum Engineers Paper SPE, –Ms, –179715, 23. https://doi.org/10.2118/179715-MS
  • de Araújo, O. M. O., Aguilera, O., Coletti, G., Valencia, F. L., Buatois, L. A., & Lopes, R. (2021). X-ray micro-computed tomography of burrow-related porosity and permeability in shallow-marine equatorial carbonates: A case study from the Miocene Pirabas Formation, Brazil. Marine and Petroleum Geology, 127, 104966.
  • de Araújo, O. M. O., Sharma, K. V., Machado, A. S., Santos, T. M. P., Ferreira, C. G., Straka, R., Tavares, F. W., & Lopes, R. T. (2018). Representative elementary volume in limestone sample. Journal of Instrumentation, 13(10), C10003–C10003.
  • Denne, R. A., Hinote, R. E., Breyer, J. A., Kosanke, T. H., Lees, J. A., Engelhardt-Moore, N., Spaw, J. M., & Tur, N. (2014). The Cenomanian- Turonian Eagle Ford Group of South Texas: Insights on timing and paleoceanographic conditions from geochemistry and micropaleontologic analyses. Palaeogeography, Palaeoclimatology, Palaeoecology, 413, 2–28.
  • Donovan, A. D., Gardner, R. D., Pramudito, A., Staerker, T. S., Wehner, M., Corbett, M. J., Lundsquist, J. J., Miceli Romero, A., Henry, L. C., Rotzien, J. R., & Boling, K. S. (2015). Chronostratigraphic relationships of the Woodbine and Eagle Ford Groups across Texas. Gulf Coast Association of Geological Societies Journal, 4, 67–87. https://archives.datapages.com/data/gcags-journal/data/004/004001/pdfs/67.htm
  • Dorgan, K. M. (2015). The biomechanics of burrowing and boring. The Journal of Experimental Biology, 218(Pt 2), 176–183.
  • Dorgan, K. M., Jumars, P. A., Johnson, B., Boudreau, B. P., & Landis, E. (2005). Burrowing mechanics: Burrow extension by crack propagation. Nature, 433(7025), 475.
  • Dorgan, K. M., Arwade, S. R., & Jumars, P. A. (2007). Burrowing in marine muds by crack propagation: Kinematics and forces. The Journal of Experimental Biology, 210(Pt 23), 4198–4212.
  • Dorgan, K. M., Arwade, S., & Jumars, P. A. (2008). Worms as wedges: Effects of sediment mechanics on burrowing behavior. Journal of Marine Research, 66(2), 219–254.
  • Dunham, R. L. (1962). Classification of carbonate rocks according to depositional texture. American Association of Petroleum Geologists, 1, 108–121.
  • Eldrett, J. S., Ma, C., Bergman, S. C., Lutz, B., Gregory, F. J., Dodsworth, P., Phipps, M., Hardas, P., Minisini, D., Ozkan, A., Ramezani, J., Bowring, S. A., Kamo, S. L., Ferguson, K., Macaulay, C., & Kelly, A. E. (2015). An astronomically calibrated stratigraphy of the Cenomanian, Turonian and earliest Coniacian from the Cretaceous Western Interior Seaway, USA: Implications for global chronostratigraphy. Cretaceous Research, 56, 316–344.
  • Eltom, H. A., & Alqubalee, A. M. (2022). Quantitative variability of burrow percentage estimated from 2D views: Example from Thalassinoides-bearing strata, Central Saudi Arabia. Palaios, 37(2), 35–43.
  • Eltom, H. A., Alqubalee, A., & Yassin, M. (2021). Potential overlooked bioturbated reservoir zones in the shallow marine strata of the Hanifa Formation in central Saudi Arabia. Marine and Petroleum Geology, 124, 104798.
  • Eltom, H. A., & Goldstein, R. H. (2023). Scale dependence of petrophysical measurements in reservoirs with Thalassinoides: Insights from CT scans. Marine and Petroleum Geology, 148, Article 106036. https://doi.org/10.1016/j.marpetgeo.2022.106036
  • Eltom, H. A., & Hasiotis, S. T. (2019). Lateral and vertical trends of preferred flow pathways associated with bioturbated carbonate: Examples from middle to Upper Jurassic strata, Central Saudi Arabia. Journal of Sedimentary Research, 18, 126–140.
  • Eltom, H. A., González, L. A., Alqubalee, A., Amao, A. O., & Salih, M. (2020). Evidence for the development of a superpermeability flow zone by bioturbation in shallow marine strata, upper Jubaila Formation, central Saudi Arabia. Marine and Petroleum Geology, 120, 104512.
  • Fabricius, I. L. (2007). Chalk: Composition, diagenesis and physical properties. Bulletin of the Geological Society of Denmark, 55, 97–128.
  • Ferrill, D. A., & Morris, A. P. (2008). Fault zone deformation controlled by carbonate mechanical stratigraphy, Balcones fault system, Texas. AAPG Bulletin, 92(3), 359–380.
  • Friesen, O. J., Dashtgard, S. E., Miller, J., Schmitt, L., & Baldwin, C. (2017). Permeability heterogeneity in bioturbated sediments and implications for waterflooding of tight-oil reservoirs, Cardium Formation, Pembina Field, Alberta, Canada. Marine and Petroleum Geology, 82, 371–387.
  • Gaillard, C., & Jautee, E. (1987). The use of burrows to detect compaction and sliding in fine-grained sediments: An example from the Cretaceous of S.E. France. Sedimentology, 34(4), 585–593.
  • Gajbhiye, B. D., Kulkarni, H. A., Tiwari, S. S., & Mathpati, C. S. (2020). Teaching turbulent flow through pipe fittings using computational fluid dynamics approach. Engineering Reports, 2(1). https://doi.org/10.1002/eng2.12093
  • Gingras, M. K., Mendoza, C., & Pemberton, S. G. (2004). Fossilized worm-burrows influence the resource quality of porous media. AAPG Bulletin, 88(7), 875–883.
  • Gingras, M. K., Pemberton, S. G., Mendoza, C., & Henk, F. H.Jr. (1999). Modeling fluid flow in trace fossils; assessing the anisotropic permeability of Glossifungites surfaces. Petroleum Geoscience, 5(4), 349–357.
  • Golab, J. A., Smith, J. J., Clark, A. K., & Morris, R. R. (2017). Bioturbation-influenced fluid pathways within a carbonate platform system: The Lower Cretaceous (Aptian–Albian) Glen Rose Limestone. Palaeogeography, Palaeoclimatology, Palaeoecology, 465, 138–155.
  • Hill, R. T. (1901). Geography and geology of the Black and Grand Prairies, Texas. U.S. Geological Survey 21st Annual Report, Part 7, 666.
  • Hsieh, A. I., Allen, D. M., & MacEachern, J. A. (2015). Statistical modeling of biogenically enhanced permeability in tight reservoir rock. Marine and Petroleum Geology, 65, 114–125.
  • Jackson, C. A., Mode, A. W., Oti, M. N., Adejinmi, K., Ozumba, B., & Osterloff, P. (2013). Effects of bioturbation on reservoir quality: An integration in reservoir modeling of selected fields in the Niger Delta Petroleum Province. Niger Association of Petroleum Exploring Bullettin, 25, 29–42.
  • Jarvie, D. M., Hill, R. J., Ruble, T. E., & Pollastro, R. M. (2007). Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 91(4), 475–499.
  • Jene, M. O., & Sugiarto, S. (2018). Textural analysis of bioturbated sediment: An outcrop study of Sambipitu Formation as an analogue to understand biogenic influence on reservoir quality. Conference Paper at the ISPG Research Forum. Ikatan Ahli Geologi Indonesia (IAGI).
  • Kennedy, W. J., & Garrison, R. E. (1975). Morphology and genesis of nodular chalks and hardgrounds in the Upper Cretaceous of southern England. Sedimentology, 22(3), 311–386.
  • Knaust, D. (2013). Bioturbation and reservoir quality: Towards a genetic approach. American Association of Petroleum Geologists Search and Discovery Article #50900. https://www.searchanddiscovery.com/pdfz/documents/2013/50900knaust/ndx_knaust.pdf.html
  • Knaust, D. (2014). Classification of bioturbation-related reservoir quality in the Khuff Formation (Middle East): Towards a genetic approach. In M. C. Pöppelreiter (Ed.), Permo-triassic sequence of the Arabian plate (pp. 247–267). EAGE.
  • Knaust, D., Dorador, J., & Rodríguez-Tovar, F. J. (2020). Burrowed matrix powering dual porosity systems – a case study from the Maastrichtian chalk of the Gullfaks Field, Norwegian North Sea. Marine and Petroleum Geology, 113, 104158.
  • La Croix, A. D., Gingras, M. K., Dashtgard, S. E., & Pemberton, S. G. (2012). Computer modeling bioturbation: The creation of porous and permeable fluid-flow pathways. AAPG Bulletin, 96(3), 545–556.
  • Ledoux, R., & Gottardi, R. (2018). Characterizing the Natural Fracture System of the Buda Formation, South Texas. Gulf Coast Association of Geological Societies Transactions, 68, 605–609.
  • Lock, B. E., Bases, F. S., & Glaser, R. A. (2007). The Cenomanian sequence stratigraphy of Central to West Texas. Gulf Coast Association of Geological Societies Transactions, 57, 465–479.
  • Loucks, R. G., & Gates, B. G. (2015). Nanopore and fracture duel pore network in the upper cretaceous buda formation, Dimmit Co., Texas. Association of Petroleum Geologists Search and Discovery Article #90216.
  • Loucks, R. G., Gates, B. G., & Zahm, C. (2019). Depositional systems, lithofacies, nanopore to micropore matrix network, and reservoir quality of the Upper Cretaceous (Cenomanian) Buda Limestone in Dimmit County, southwestern Texas. Gulf Coast Association of Geological Societies Journal, 8, 281–300.
  • Lucas, S. G., Krainer, K., Spielmann, J. A., & Durney, K. (2010). Cretaceous stratigraphy, paleontology, petrography, depositional environments, and cycle stratigraphy at Cerro de Cristo Rey, Doña Ana County, New Mexico. New Mexico Geology, 32(4), 103–130. https://geoinfo.nmt.edu/publications/periodicals/nmg/32/n4/nmg_v32_n4_p103.pdf
  • Mancini, E. A., & Scott, R. W. (2006). Sequence stratigraphy of Comanchean Cretaceous outcrop strata of Northeast and South-Central Texas: Implications for enhanced petroleum exploration. Gulf Coast Association of Geological Societies Transactions, 56, 539–550.
  • Martin, K. G. (1967). Stratigraphy of the Buda Limestone, south-central Texas. Comanchean (Lower Cretaceous) Stratigraphy and Paleontology of Texas Permian Basin Section SEPM, 67(8), 287–299.
  • Meng, Q., & Hodgetts, D. (2020). Forced folding and fracturing induced by differential compaction during post-depositional inflation of sandbodies: Insights from numerical modelling. Marine and Petroleum Geology, 112, 104052.
  • Meysman, F. J. R., Middelburg, J. J., & Heip, C. H. R. (2006). Bioturbation: A fresh look at Darwin’s last idea. Trends in Ecology & Evolution, 21(12), 688–695.
  • Mews, K. S., Alhubail, M. M., & Barati, R. (2019). A review of brittleness index correlations for unconventional tight and ultra-tight reservoirs. Geosciences, 9(7), 319.
  • Miguez-Salas, O., Dorador, J., Rodríguez-Tovar, F. J., & Linares, F. (2022). X-ray microtomography analysis to approach bioturbation’s influence on minor-scale porosity distribution: A novel approach in contourite deposits. Journal of Petroleum Science and Engineering, 208, 109251.
  • Minisini, D., Eldrett, J., Bergman, S. C., & Forkner, R. (2018). Chronostratigraphic framework and depositional environments in the organic-rich, mudstone-dominated Eagle Ford Group, Texas, USA. Sedimentology, 65(5), 1520–1557.
  • Mode, A. W., Jackson, C., Ekwenye, O. C., & Ezeh, S. C. (2022). Impact of bioturbation on quality of Early-Middle Miocene shoreface reservoirs, Coastal Swamp Depobelt, Niger Delta Basin (Nigeria). In M. Meghraoui (Eds.), Advances in geophysics, tectonics and petroleum geosciences. CAJG 2019. Advances in Science, Technology & Innovation. Springer.
  • Murphy, E. A., & Dorgan, K. M. (2011). Burrow extension with a proboscis: Mechanics of burrowing by the glycerid Hemipodus simplex. The Journal of Experimental Biology, 214(Pt 6), 1017–1027.
  • Niu, Y. B., Cheng, M. Y., Zhang, L. Y., Zhong, J. H., Liu, S. X., Wei, D., Xu, Z. L., & Wang, P. J. (2022). Bioturbation enhanced petrophysical properties in the Ordovician carbonate reservoir of the Tahe oilfield, Tarim Basin, NW China. Journal of Palaeogeography, 11(1), 31–51.
  • Niu, Y. B., Marshall, J. D., Song, H. B., Hu, B., Hu, Y. Z., Jin, Y., Zhang, L. J., Pan, J. N., & Wu, W. (2020). Ichnofabrics and their roles in the modification of petrophysical properties: A case study of the Ordovician Majiagou Formation, northwest Henan Province, China. Sedimentary Geology, 409, 105773.
  • Nordahl, K., & Ringrose, P. S. (2008). Identifying the representative elementary volume for permeability in heterolithic deposits using numerical rock models. Mathematical Geosciences, 40(7), 753e771–753e771.
  • Odelugo, L., Ogbahon, O. A., & Kelechi, A., I. (2016). Bioturbation: It’s effect on reservoir quality. International Journal of Sciences Inventions Today, 5(3), 248–260. http://www.ijsit.com/admin/ijsit_files/BIOTURBATION%20ITS%20EFFECT%20ON%20RESERVOIR%20QUALITY_IJSIT_5.3.4.pdf
  • Osborne, M. J., & Swarbrick, R. E. (1997). Mechanisms for generating overpressure in sedimentary basins: A reevaluation. American Association of Petroleum Geologists Bulletin, 81(6), 1023–1041. https://doi.org/10.1306/522B49C9-1727-11D7-8645000102C1865D
  • Pemberton, S. G., Frey, R. W., Ranger, M. J., & MacEachern, J. A. (1992). The conceptual framework of ichnology. In S. G. Pemberton (Ed.), Applications of ichnology to petroleum exploration: A core workshop (Vol. 17, pp. 1–32). Society for Sedimentary Geology.
  • Pemberton, S. G., & Gingras, M. K. (2005). Classification and characterizations of biogenically enhanced permeability American Association of Petroleum Geologists. AAPG Bulletin, 89(11), 1493–1517.
  • Qi, Y., Wang, M., Zheng, W., & Li, D. (2012). Calcite cements in burrows and their influence on reservoir property of the Donghe Sandstone, Tarim Basin, China. Journal of Earth Science, 23(2), 129–141.
  • Reaser, D. F., & Dawson, W. C. (1995). Geologic study of Upper Cretaceous (Cenomanian) Buda Limestone in northeast Texas with analysis of some regional implications. Gulf Coast Association of Geological Societies Transactions, 45, 495–502.
  • Reaser, D. F., & Robinson, W. C. (2003). Cretaceous Buda Limestone in west Texas and northern Mexico. In R. W. Scott, (Ed.), Cretaceous stratigraphy and paleoecology, Texas and Mexico. Perkins memorial volume, Gulf coast section SEPM foundation, special publications in Geology (Vol. 1, pp. 337–373).
  • Rodríguez-Tovar, F. J., Miguez-Salas, O., & Dorador, J. (2021). Mercury intrusion porosimetry to evaluate the incidence of bioturbation on porosity of contourites. Rivista Italiana di Paleontologia e Stratigrafia (Research in Paleontology and Stratigraphy), 127(1), 149–161. https://doi.org/10.13130/2039-4942/15208
  • Rose, P. R. (2016). Late Cretaceous and Tertiary burial history, central Texas. Gulf Coast Association of Geological Societies Journal, 5, 141–179.
  • Salih, M., Reijmer, J. J. G., El Husseiny, A., Bashri, M., Eltom, H., Mukainah, H. A., & Kaminski, M. A. (2021). Controlling factors on petrophysical and acoustic properties of bioturbated carbonates: (Upper Jurassic, Central Saudi Arabia). Applied Sciences, 11(11), 5019.
  • Schrag, D. P., Higgins, J. A., Macdonald, F. A., & Johnston, D. T. (2013). Authigenic carbonate and the history of the global carbon cycle. Science (New York, NY), 339(6119), 540–543.
  • Scott, R. W., Oboh-Ikuenobe, F. E., Benson, D. G., Holbrook, J. M., & Alnahwi, A. (2018). Cenomanian-Turonian flooding cycles: US Gulf Coast and Western Interior. Cretaceous Research, 89, 191–210.
  • Singh, A., Dcunha, J., & Desai, B. G. (2022). Evaluating cementation factor for bioturbated sandstones, Bhuj Formation, Kachchh Basin, India: A novel approach using triple‑porosity model. Journal of Petroleum Exploration and Production Technology, 12(9), 2441–2452.
  • Smirnov, A., & Liner, C. L. (2018). Interpretation and fracture characterization of Upper Cretaceous Buda Limestone Formation using post-stack 3d seismic data in Zavala County, Texas. American Association of Petroleum Geologists Search and Discovery Article #11108. https://www.searchanddiscovery.com/documents/2018/11108smirnov/ndx_smirnov.pdf
  • Snyder, R. H., & Craft, M. (1977). Evaluation of Austin and Buda Formations from core and fracture analysis. Gulf Coast Association of Geological Societies Transactions, 27, 376–385.
  • Stapp, W. L. (1977). The geology of the fractured Austin and Buda formations in the subsurface of South Texas. Gulf Coast Association of Geological Societies Transactions, 27, 208–229.
  • Taylor, A. M., & Goldring, R. (1993). Description and analysis of bioturbation and ichnofabric. Journal of the Geological Society, 150(1), 141–148.
  • Tonkin, N. S., McIlroy, D., Meyer, R., & Moore-Turpin, A. (2010). Bioturbation influence on reservoir quality: A case study from the Cretaceous Ben Nevis Formation, Jeanne’dArc Basin, offshore Newfoundland, Canada. AAPG Bulletin, 94(7), 1059–1078.
  • Valencia, F. L., Buatois, L. A., Laya, J. C., Mángano, M. G., Valencia, G. L., & Pope, M. C. (2021). Depositional environments and controls on the stratigraphic architecture of the Cenomanian Buda Limestone in west Texas, USA. Marine and Petroleum Geology, 133, 105275.
  • Valencia, F. L., Laya, J., C., Buatois, L. A., Mángano, M. G., & Valencia, G. L. (2022). Sedimentology and stratigraphy of the Cenomanian Buda Limestone in central Texas, U.S.A.: Implications on regional and global depositional controls. Cretaceous Research, 137, 105231.
  • Valencia, F. L., Mángano, M. G., Buatois, L. A., & Laya, J. C. (2022). Animal-substrate interactions preserved in ancient lagoonal chalk. Scientific Reports, 12(1), 14383.
  • Wilson, M. A., & Palmer, T. J. (1992). Hardgrounds and hardground faunas (pp. 1–131). University of Wales.
  • Wright, V. P., & Cherns, L. (2016). How far did feedback between biodiversity and early diagenesis affect the nature of Early Palaeozoic sea floors? Palaeontology, 59(6), 753–765.
  • Wu, X., Moin, P., & Adrian, R. J. (2020). Laminar to fully turbulent flow in a pipe: Scalar patches, structural duality of turbulent spots and transitional overshoot. Journal of Fluid Mechanics, 896(A9), 1–27.
  • Xiong, Z., Wang, G., Cao, Y., Liang, C., Li, M., Shi, X., Zhang, B., Li, J., & Fu, Y. (2019). Controlling effect of texture on fracability in lacustrine fine-grained sedimentary rocks. Marine and Petroleum Geology, 101, 195–210.
  • Xu, J., & Sonnenberg, S. (2016). Brittleness and rock strength of the bakken formation [Paper presentation]. Unconventional Resources Technology Conference, Basin. North Dakota.
  • Zahm, C. K., Loucks, R. G., & Gates, B. G. (2019). High-resolution rock strength and the implications for reservoir geomechanics in the Cenomanian-age Buda Formation, Dimmit County, Texas. Gulf Coast Association of Geological Societies Journal, 8, 268–280.
  • Zhou, J., & Chafetz, H. S. (2009). Biogenic caliches in Texas: The role of organisms and effect of climate. Sedimentary Geology, 222(3–4), 207–225.
  • Zhou, X., Wang, R., Du, Z., Wu, J., Wu, Z., Ding, W., Li, A., Xiao, Z., Cui, Z., & Wang, X. (2022). Characteristics and main controlling factors of fractures within highly-evolved marine shale reservoir in strong deformation zone. Frontiers in Earth Science, 10, 832104.
  • Zou, C., Dong, D., Wang, S., Li, J., Li, X., Wang, Y., Li, D., & Cheng, K. (2010). Geological characteristics and resource potential of shale gas in China. Petroleum Exploration and Development, 37(6), 641–653.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.