90
Views
9
CrossRef citations to date
0
Altmetric
Original

Strict conservation of the ITS regions of the ribosomal RNA genes in Atlantic cod (Gadus morhua L.)

Full Length Research Paper

, , &
Pages 107-114 | Received 28 Jun 2005, Published online: 11 Jul 2009

References

  • Alice LA, Brawley SH, Serrão EA. Evolution of the Fucaceae (Phaeophyceae) inferred from nrDNA-ITS. J Phycol 1999; 35: 382–394
  • Aliesky H, Collins CM, Cunningham CO. Sequcence and secondary structure variation in the Gyrodactylus (Platyhelminthes: Monogenea) ribosomal RNA gene array. J Phycol 2000; 86(3)567–576
  • Arnason E, Rand DM. Heteroplasmy of short tandem repeats in mitochondrial DNA of Atlantic cod, Gadus morhua. Genetics 1998; 132(1)211–220
  • Arnason E, Petersen PH, Palsson S. Mitochondrial cytochrome b DNA sequence variation of Atlantic cod, Gadus morhua L., from the Baltic and the White Seas. Hereditas 1998; 129(1)37–43
  • Bakker FT, Hoek C, Olsen JL, Stam WT. Nuclear ribosomal DNA internal transcribed spacer regions (ITS1 and ITS2) define discrete biogeogrpahic groups in Cladophora albida (Chlorophyta). J Phycol 1992; 28: 839–845
  • Bakker FT, Olsen JL, Stam WT. Evolution of nuclear rDNA ITS sequences in the Cladophora albida/sericea clade (Chlorophyta). J Phycol 1995; 40: 640–651
  • Bergstad OA, Draesund O, Jørgensen T. Life history and ecology of the gadiod resources of the Barents sea. Fish Res 1987; 5: 119–161
  • Booton GC, Kaufman L, Chandler M, Oguto-Ohwayo R, Duan W, Fuerst PA. Evolution of the ribosomal RNA internal transcribed spacer one (ITS1) in ciclid fishes of the lake Victoria region. Mol Phylogenet Evol 1999; 11: 273–282
  • Brix O, Fyhn UEH, Johansen T, Nævdal G. New variants of the haemoglobins of Atlantic cod: A tool for discriminating between coastal and Arctic cod populations. ICES Mar Sci Symp 1994; 198: 666–670
  • Carr SM, Snellen AJ, Howse KA, Wroblewski JS. F Mitochondrial DNA sequence variation and genetic stock structure of Atlantic cod (Gadus morhua L.) Newfoundland continental shelf. Mol Ecol 1995; 4(1)79–88
  • Coleman AW, Mai JC. Ribosomal DNA-ITS-1 and ITS-2 sequence comparisons as a tool for predicting genetic relatedness. J Mol Evol 1997; 45: 167–168
  • Collins FH, Paskewitz SM, Wesson DM. The internal transcribed spacers of ribosomal DNA in five members of the Anopheles gambiae species complex. Insect Mol Biol 1993; 2(4)247–257
  • Crandall KA, Harris DJ. Intragenomic variation within ITS1 and ITS2 of freshwater crayfishes (Decapoda: Cambaridae): Implications for phylogenetic and microsatelite studies. Mol Biol Evol 2000; 17(2)284–291
  • Crollius HR, Jaillon O, Dasilva C, Ozouf-Costaz C, Fizames C, Fischer C, Bouneau L, Billault A, Quetier F, Saurin W, Bernot A, Weissenbach J. Characterization and repeat analysis of the compact genome of the freshwater pufferfish Tetraodon nigroviridis. Genome Res 2000; 10: 939–949
  • Dahle G. Cod (Gadus morhua L.) populations identified by mitochondrial DNA. J Fish Biol 1991; 38: 295–303
  • Dahle G. 1995. Genetic structure of the Northeast Atlantic cod (Gadus morhua L.), an appraisal of different molecular techniques, Dr Philos. Thesis, Department of Fisheries and Marine Biology, University of Bergen, Norway.
  • Dahle G, Jørstad K. Haemoglobin variation in cod- reliable marker for Arctic cod (Gadus morhua L). Fish Res 1993; 16: 301–311
  • Ford-Lloyd BV, Newbury HJ, Shen Y. Identification of taxa in the genus beta using ITS1 sequence information. Plant Mol Biol Rep 1998; 16: 147–155
  • Frydenberg O, Møller D, Nævdal G, Sick K. Haemoglobin polymorphism in Norwegian cod populations. Hereditas 1965; 53: 257–271
  • Gittenberger E, Gultyaev AP, Schilthuizen M. Phylogenetic relationships inferred from the sequence and secondary structure of ITS1 rRNA in Albinaria and Putative Isabellaria species (Gastropoda,Pulmonata, Clausiliidae). Mol Phylogenet Evol 1995; 4(4)457–462
  • Good L, Intine RVA, Nazar RN. The ribosomal-RNA-processing pathway in Schizosaccaromyces pombe. Eur J Biochem 1997; 247: 314–321
  • Grøsvik BE, Raae AJ. The genome size and the structure and content of. ribosomal RNA genes in Atlantic cod (Gadus morhua L.). Comp Biochem Physiol 1992; 101B(3)407–411
  • Hemmingsen W, Lombardo I, MacKenzie K. Parasites as biological tags for cod Gadus morhua L., in northern Norway: A pilot study. Fish Res 1991; 12: 365–373
  • Johansen S, Bakke I. The complete mitochondrial DNA sequence of Atlantic cod (Gadus Morhua L.): Relevance to taxonomic studies among codfishes. Mol Mar Biol Biotechnol 1996; 5(3)203–214
  • Johansen S, Johansen T. Sequence analysis of 12 structural genes and a novel non-coding region from mitochondrial DNA of Atlantic cod, Gadus morhua L. Biochim Biophys Acta 1994; 21(1218:2)213–217
  • Johansen T, Fevolden SE, Nyhammer G, Nævdal G. 2005. Evidence for genotype associated variation in growth, maturation and survival in cod (Gadus morhua L.), In preparation.
  • Jørstad KE. Genetic studies connected with artificial propagation of cod (Gadus morhua L.). Aquaculture 1986; 57: 227–238
  • Jørstad KE, Otterå H, Svåsand T. Growth of juvenile Arcto-Norwegian and Norwegian coastal cod reared under similar conditions (Abstract). ICES Mar Sci Symp 1994; 198: 624–625
  • Kahn AB. 1996. Aspects of the molecular phylogeny of three species of the wild rice genus, Zizania, based on nuclear rDNA sequences, Master of Science Thesis, South West Texas State University, USA.
  • Knutsen H, Jorde PE, André C, Stenseth NC. Fine-scaled geographic population structuring in a highly mobile marine species: The Atlantic cod. Mol Ecol 2003; 12: 385–394
  • Lee S, Wen J. Phylogenetic analysis of Prunus and the Amygdaloideae (Rosaceae) using ITS sequences of nuclear ribosomal DNA. Am J Bot 2001; 88(1)150–160
  • Lev-Maor G, Sorek R, Shomron N, Ast G. The birth of an alternatively spliced exon: 3′ splice-site selection in alu exons. Science 2003; 300: 1288–1291
  • Long EO, David IB. Repeated genes in eukaryotes. Annu Rev Biochem 1980; 49: 727–764
  • Mathews DH, Andre TC, Kim J, Turner DH, Zuker M. An updated recursive algorithm for RNA secondary structure prediction with improved free energy parameters. Am Chem Soc Symp Ser 1998; 682: 246–257
  • Møller D. Red blood cells antigens in cod. Sarsia 1967; 29: 413–430
  • Nielsen EE, Hansen MM, Schmidt C, Meldrup D, Grønkjær P. Population of origin of Atlantic. Nature 2001; 413: 272
  • Nævdal G, Folkvord A, Otterlei E, Thorkildsen S. Growth rate related to genotype of 0-group cod at three environmental temperatures. Sarsia 1992; 77: 71–73
  • Olsen EM, Knutsen H, Stenseth N, Gjøsæter chr., Jorde PE. Life-history variation among genetically different neighbouring populations of coastal Atlantic cod. J Fish Biol 2004; 64: 1–6
  • Pörtner HO, Berdal B, Blust R, Brix O, Colosimo A, De Wachter B, Guliani A, Johansen T, Fischer T, Knust R, Lannig G, Nævdal G, Nedenes A, Nyhammer G, Sartories FJ, Serendero I, Sirabella P, Thorkildsen S, Zakhartsev M. Climate induced temperature effects on growth performance, fecundity and recruitment in marine fish: Developing a hypothesis for cause and effect relationships in Atlantic cod (Gadus morhua) and common eelpout (Zoarces viviparous). Cont Shelf Res 2001; 21: 1975–1997
  • Repolho T. Intra and inter-individual ITS (internal transcribed spacer) variation in cod (Gadus morhua): Inter-species comparative analysis with other teleost fishes. IFM Rapp 2002; 2: 1–45, Department of Fisheries and Marine Biology, University of Bergen.
  • Rollefsen G. The otoliths of the cod. Fiskeridirektratets Skrifter Serie Havundersokelser 1933; 4: 1–14
  • Ruzzante DE, Taggart CT, Cook D. A nuclear DN; a basis for shelf-and bank scale population structure in northwest Atlantic cod (Gadus morhua): Labrador to Georges bank. Mol Ecol 1998; 7: 1663–1680
  • Ryman N, Utter FM. Population genetics and fishery management. University of Washington press, Seattle 1987, Washington Sea Grant Program,
  • Sundby S. 1994. The influence of bio-physical processes on fish recruitment in an Arctic boreal ecosystem, PhD. Thesis, University of Bergen, Norway
  • Theriot EC, Zechman FW, Zimmer EA. The use of ribosomal DNA internal transcribed spacers for phylogenetic studies in diatoms. J Phycol 1994; 30: 507–512
  • Zuker M. The use of dynamic programming algorithms in RNA secondary structure prediction. Mathematical methods for DNA sequences, MS Waterman. CRC Press, Boca Raton, FL 1989; 159–184
  • Zuker M, Stiegler P. Optimal computer folding of larger RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 1981; 9: 133–141

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.