240
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Phosphoryl Transfer Enzymes and Hypervalent Phosphorus Chemistry

REFERENCES

  • Holmes, R.R. Acc. Chem. Res. 1998, 31, 535-542, and references therein.
  • Holmes, R.R. Pentacoordinated Phosphorus—Reaction Mechanisms, Vol. 190; ACS Monograph 176, American Chemical Society: Washington, DC, 1980; 237 pp.
  • Lippard, S.J.; Berg, J.M. Principles of Bioinorganic Chemistry; University Science Books: Mill Valley, CA, 1994, and references therein.
  • Thatcher, G.R. J.; Kluger, R. In Advances in Physical Organic Chemistry; Bethell, D., Ed.; Academic Press: New York, 1989; Vol. 190, pp 99-265, and references therein.
  • Westheimer, F.H. Pseudorotation in the Hydrolysis of Phosphate Esters. Acc. Chem. Res. 1968, 1, 70-78; The Hydrolysis of Phosphate Esters. Pure Appl. Chem. 1977, 49, 1059-1067(b)Gerlt, J.A.; Westheimer, F.H.; Sturtevant, J.M. The Enthalpies of Hydrolysis of Acyclic, Monocyclic, and Glycoside Cyclic Phosphate Diesters. J. Biol. Chem. 1975, 250, 5059-5067.
  • Holmes, R.R. Comparison of Phosphorus and Silicon: Hypervalency, Stereochemistry, and Reactivity. Chem. Rev. 1996, 96, 927-950, and references therein.
  • Holmes, R.R. The Stereochemistry of Nucleophilic Substitution of Tetracoordinate Silicon. Chem Rev. 1990, 90, 17-31.
  • Holmes, R.R.; Day, R.O.; Deiters, J.A.; Kumara Swamy, K.C.; Holmes, J.M.; Hans, J.; Burton, S.D.; Prakasha, T.K. In Phosphorus Chemistry, Developments in American Science; Walsh, E.N.; Griffiths, E.J.; Parry, R.W.; Quin, L.D., Eds.; ACS Symposium Series 486; American Chemical Society: Washington, DC, 1992; pp 18-40, and references therein.
  • (a) Gerlt, J.A. The Enzymes, 3rd ed.; Sigman, D.S., Ed.; Academic Press: New York, 1992; Vol. 190, pp 95-139(b). Frey, P.A. The Enzymes, 3rd ed.; Sigman, D.S., Ed.; Academic Press: New York, 1992; Vol. 190, pp 141-186.
  • Wladkowski, B.D.; Anders Svensson, L.; Sjolin, L.; Ladner, J.E.; Gilliland, G.L. Structure (1.3 Å) and Charge States of a Ribonuclease A-Uridine Vanadate Complex: Implications for the Phosphate Ester Hydrolysis Mechanism. J. Am. Chem. Soc. 1998, 120, 5488-5498.
  • Yu, J.H.; Arif, A.M.; Bentrude, W.G. Pentacovalent PhosphorusContaining Models of P(V)H2Oor Enzyme-cAMP Adducts. Nonchair Conformations of the Phosphorus Containing Rings as Determined by 1H NMR Spectroscopy and X-ray Crystallography. J. Am. Chem. Soc. 1990, 112, 7451-7461, and references therein.
  • Fersht, A.R.; Knill-Jones, J.W.; Bedouelle, H.; Winter, G. Reconstruction by Site-Directed Mutagenesis of the Transition State for the Activation of Tyrosine by the Tyrosyl-tRNA Synthetase. A Mobile Loop Envelopes the Transition State in an Induced-Fit Mechanism. Biochemistry 1988, 27, 1581-1587.
  • Wong, C.Y.; Kennepohl, D.K.; Cavell, R.G. Neutral Six-Coordinate Phosphorus. Chem. Rev. 1996, 96, 1917-1951.
  • For an excellent discussion of phosphoryl and acyl transfer reaction mechanisms based on the use of isotope effects, see. Cleland, W.W.; Hengge, A.C. Mechanisms of Phosphoryl and Acyl Transfer. FASEB J. 1995, 9, 1585-1594.
  • Lahiri, S.D.; Zhang, G.; Dunaway-Mariano, D.; Allen, K.N. The Pentacovalent Phosphorus Intermediate of a Phosphoryl Transfer Reaction. Science 2003, 299, 2067-2071.
  • Chandrasekaran, A.; Day, R.O.; Holmes, R.R. Coordination of Carbonyl and Carboxyl Oxygen Atoms with Phosphorus in the Presence of Hydrogen Bonding. P-O Donor Action. Inorg. Chem. 2001, 40, 6229-6238.
  • Chandrasekaran, A.; Day, R.O.; Holmes, R. R P-O Donor Action From Carboxylate Anions with Phosphorus in the Presence of Hydrogen Bonding. A Model for Phosphoryl Transfer Enzymes. Inorg. Chem. 2002, 41, 1645-1651.
  • Pimental, G.C.; McClellan, A.L. The Hydrogen Bond; W. H. Freeman and Co.: San Francisco, 1960.
  • Huheey, J.E.; Keiter, E.A.; Keiter, R.L. Inorganic Chemistry, 4th ed.; Harper Collins: New York, 1993, . Appendix E.
  • Sood, P.; Chandrasekaran, A.; Day, R.O.; Holmes, R.R. Structural Displacement of Phosphites, Phosphates, and Pentaoxyphosphoranes to Higher Coordinate Geometries by Sulfur and Oxygen Donor Action. Inorg. Chem. 1998, 37, 6329-6336.
  • Chandrasekaran, A.; Sood, P.; Day, R.O.; Holmes, R.R. Chloroand Fluoro Substituted Phosphites, Phosphates, and Phosphoranes Exhibiting Sulfur and Oxygen Coordination. Inorg. Chem. 1999, 38, 3369-3376.
  • Chandrasekaran, A.; Day, R.O.; Holmes, R.R. Isomeric Intraconversions Among Pentaand Hexa-Coordinate Cyclic Oxyphosphoranes via Oxygen Atom Coordination. J. Am. Chem. Soc. 1997, 119, 11434-11441.
  • Chandrasekaran, A.; Day, R.O.; Holmes, R.R. Sulfonyl Containing Eight-Membered Rings Varying in Ring Conformation in Oxyphosphoranes. Hexacoordination vs Pentacoordination. Inorg. Chem. 1997, 36, 2578-2585.
  • Timosheva, N.V.; Chandrasekaran, A.; Day, R.O.; Holmes, R.R. Three-, Four-, and Five-Coordinate Phosphorus Compounds Containing Salicylate Ligands. Inorg. Chem. 1998, 37, 3862-3867.
  • Sherlock, D.J.; Chandrasekaran, A.; Day, R.O.; Holmes, R.R. Pentacoordination and Pseudopentacoordination via Sulfur Donor Action in Cyclic Phosphates and Phosphites. Inorg. Chem. 1997, 36, 5082-5089.
  • Prakasha, T.K.; Day, R.O.; Holmes, R.R. Diequatorial and AxialEquatorial Orientations of Eight-Membered Rings in Monocyclic Pentaoxyphosphoranes Containing Trifluoroethoxy Groups. Inorg. Chem. 1992, 31, 1913-1921.
  • Prakasha, T.K.; Day, R.O.; Holmes, R.R. Conformational Variation of Sulfur-Bridged Eight-Membered Rings in Four-, Five-, and SixCoordinated Oxygen Ligated Phosphorus Compounds. Inorg. Chem. 1992, 31, 3391-3397.
  • Prakasha, T.K.; Day, R.O.; Holmes, R.R. Influence of Phosphorus-Sulfur Bonding in the Formation of Octahedrally Coordinated Cyclic Pentaoxyphosphoranes. J. Am. Chem. Soc. 1993, 115, 2690-2695.
  • Holmes, R.R.; Prakasha, T.K.; Day, R.O. Eight-Membered Rings in Pentaoxyphosphoranes Containing Trifluoroethoxy Groups. Influence of P-S Bonding. Phosphorus, Sulfur, Silicon Relat. Elem. 1993, 75, 249-252.
  • Holmes, R.R.; Prakasha, T.K.; Day, R.O. Variations in Sulfur Containing Eight-Membered Ring Conformations of Hydrogen Bonded and Nonhydrogen Bonded Cyclic Phosphates and Octahedrally Coordinated Cyclic Pentaoxyphosphoranes. Inorg. Chem. 1993, 32, 4360-4367.
  • Sherlock, D.J.; Chandrasekaran, A.; Day, R.O.; Holmes, R.R. Hexacoordination via Sulfur Donor Action in Nitrogen and Chlorine Bonded Bicyclic Tetraoxyphosphoranes. J. Am. Chem. Soc. 1997, 119, 1317-1322.
  • Sherlock, D.J.; Chandrasekaran, A.; Prakasha, T.K.; Day, R.O.; Holmes, R.R. Conformational Preferences and Donor Atom Interaction Leading to Hexacoordination vs Pentacoordination in Bicyclic Tetraoxyphosphoranes. Inorg. Chem. 1998, 37, 93-101.
  • Sood, P.; Chandrasekaran, A.; Prakasha, T.K.; Day, R.O.; Holmes, R.R. Hexacoordination via Sulfur Donor Action in Bicyclic Pentaoxyphosphoranes. Inorg. Chem. 1997, 36, 5730-5734.
  • Sood, P.; Chandrasekaran, A.; Day, R.O.; Holmes, R.R. Increased Coordination via Sulfur Donor Action in Cyclic Pentaoxyphosphoranes and the Parent Cyclic Phosphite. Influence of Pentafluorophenoxy Ligands. Inorg. Chem. 1998, 37, 3747-3752.
  • Chandrasekaran, A.; Sood, P.; Day, R.O.; Holmes, R.R. The First Hydrogen Bonded Anionic Phosphates Exhibiting Sulfur Donor Coordination. Inorg. Chem. 1999, 38, 3952-3953.
  • Timosheva, N.V.; Chandrasekaran, A.; Day, R.O.; Holmes, R.R. Cyclic Three-, Four-, Five-, and Six-Coordinate Nitrogen Containing Phosphorus Compounds Varying in Size from Fiveto TenMembered. Inorg. Chem. 1998, 37, 4945-4952.
  • Chandrasekaran, A.; Timosheva, N.V.; Day, R.O.; Holmes, R.R. Crystal Structures of Tris(8-dimethylaminonaphthyl)phosphane and its Hydrochloride Salt. The First Seven-Coordinate Phosphorus Compound. Inorg. Chem. 2000, 39, 1338-1339.
  • Chandrasekaran, A.; Day, R.O.; Holmes, R.R. Synthesis and Structure of Cyclic Phosphate, Phosphoramidate, Phosphonates, and Phosphonium Salts. Phosphatrane Formation. Inorg. Chem. 2000, 39, 5683-5689.
  • Timosheva, N.V.; Chandrasekaran, A.; Day, R.O.; Holmes, R.R. Conversion of Tricoordinate to Hexacoordinate Phosphorus. Formation of a Phosphorane-Phosphatrane System. J. Am. Chem. Soc. 2002, 124, 7035-7040 (b). A number of earlier studies on spirooxyphosphoranes with various donor bases have shown by 31P NMR that intermolecular P(V) T P(VI) equilibria are established in solution. For example, Schmidpeter, A.; von Criegern, T.; Blanck, K. Z. Naturforsch. 1976, 31b, 1058-1063 and references therein; Burgada, R.; Setton, R. The Chemistry of Organophosphorus Compounds; Hartley, F.R., Ed.; Wiley: New York, 1994; Vol.190, . Chapter 3 and references therei(c) Reference 22 represents the first study establishing intramolecular exchange in solution between pentaand hexacoordinate isomers of phosphorus. The results indicate that the thermodynamic stability of these five and six coordinate isomers is approximately the same.
  • Chandrasekaran, A.; Day, R. O. Holmes, R.R. Structure-Reactivity Relationships for Associative Displacement Reactions of Pentaand Hexa-Coordinate Cyclic Oxyphosphoranes with Catechols. Inorg. Chem. 1998, 37, 459-466.
  • Chandrasekaran, A.; Timosheva, N.V.; Day, R.O.; Holmes, R.R. Influence of Hydrogen Bonding in Competition with Lattice Interactions on Carbonyl Coordination at Phosphorus. Implications for Phosphoryl Transfer Activated Sates. Inorg. Chem. 2003, 42, 3285-3292.
  • Jubian, V.; Veronese, A.; Dixon, R.P.; Hamilton, A.D. Acceleration of a Phosphate Diester Transesterification Reaction by Bis(alkylguanidinium) Receptors Containing an Appended General Base. Angew. Chem., Int. Ed. Engl. 1995, 34, 1237-1239 (b)Bruice, T.C.; Blasko, A.; Arasasingham, R.D.; Kim, J.-S. Participation of Two Carboxyl Groups in Phosphodiester Hydrolysis. 2. A Kinetic, Isotopic, and 31P NMR Study of the Hydrolysis of a Phosphodiester with Carboxyl Groups Fixed in an Attack Conformation. J. Am. Chem. Soc. 1995, 117, 12070-12077.(c)Blasko, A.; Bruice, T.C. Recent Studies of Nucleophilic, GeneralAcid, and Metal Ion Catalysis of Phosphate Diester Hydrolysis. Acc. Chem. Res. 1999, 32, 475-484.
  • Copeland, R.A. Enzymes, 2nd ed; John Wiley & Sons: 2000.
  • Holmes, R.R. Pentacoordinated Phosphorus Structure and Spectroscopy: ACS Monograph 175; American Chemical Society: Washington, D. C., 1980; Vol. 190, 479 pp.
  • Reference 2, p 104.
  • Hengge, A.C., In Comprehensive Biological Catalysis; Sinnott, M., Ed.; Academic Press: San Diego, CA, 1997; Vol. 190, p 517.
  • Blackburn, G.M.; Williams, N.H.; Gamblin, S.J.; Smerdon, S.J. Comment on “The Pentacovalent Phosphorus Intermediate of a Phosphoryl Transfer Reaction”. Science 2003, 301, 1184c.
  • Allen, K.N.; Dunaway-Mariano, D. Response to Comment on “The Pentacovalent Phosphorus Intermediate of a Phosphoryl Transfer Reaction”. Science 2003, 301, 1184d.
  • James, L.C.; Tawfik, D.S. Trends Biochem. Sci. 2003, 28, 361.
  • Berry, R.S. J. Chem. Phys. 1960, 32, 933.
  • Holmes, R.R. Structures of Cyclic Pentacoordinated Molecules of Main Group Elements. Acc. Chem. Res. 1979, 12, 257-265.
  • Holmes, R.R. Five-Coordinated Structures. In Progress in Inorganic Chemistry; Lippard, S.J., Ed.; John Wiley and Sons: New York, 1984; Vol. 190, pp 119-235.
  • O’Brien, P.J.; Herschlag, D. Catalytic Promiscuity and the Evolution of New Enzymatic Activities. Chem. Biol. 1999, 6, R91-105.
  • James, L.C.; Tawfik, D.S. Catalytic and Binding Poly-Reactivities Shared by Two Unrelated Proteins: The Potential Role of Promiscuity in Enzyme Evolution. Protein Sci. 2001, 10, 2600-2607.
  • Schmidt, D.M. Z.; Mundorff, E.C.; Dojka, M.; Bermundez, E.; Ness, J.E.; Govindarajan, S.; Babbitt, P.C.; Minshull, J.; Gerlt, J.A. Evolutionary Potential of (â/R)8 -Barrels: Functional Promiscuity Produced by Single Substitutions in the Enolase Superfamily. Biochemistry 2003, 42, 8387-8393.
  • Seffermick, J.L.; Wackett, L.P. Rapid Evolution of Baacterial Catabolic Enzymes: A Case Study with Atrazine Chlorohydrolase. Biochemistry 2001, 40, 12747-12753.
  • James, L.C.; Roversi, P.; Tawfik, D.S. Antibody Multispecificity Mediated by Conformational Diversity. Science 2003, 299, 1362-1367(b) Reference 49. These two articles describe conformational diversity of enzymes. The latter reference, 49, lists a glossary of terms used to describe the ability of a protein to exhibit more than one specificity or perform more than one function.
  • Copley, S.D. Enzymes with Extra Talents: Moonlighting Functions and Catalytic Promiscuity. Current Opinion in Chemical Biology 2003, 7, 265-272, also gives examples of four types of catalytic promiscuity.
  • Jeffrey, C.J. Moonlighting Proteins. Trends Biochem. Sci. 1999, 24, 8-11.
  • Moonlighting proteins, a term coined by Gregory A. Petsko, is discussed also by Yarnell, A. The Power of Promiscuity. C&EN 2003, 33.
  • Ramirez, F.; Marecek, J.F.; Okazaki, H. One Flask Synthesis of Unsymmetrical Phosphodiesters. Selective Amine Catalysis of the Phosphorylation of Primary vs Secondary Alcohols. J. Am. Chem. Soc. 1976, 98, 5310-5319, and references therein.
  • Ramirez, F.; Marecek, J.F. One-flask Phosphorylative Coupling of Two Different Alcohols. J. Org. Chem. 1975, 40, 2849-2850.
  • Ramirez, F.; Marecek, J.F. Acetate Ion Catalysis of Phosphorylations in Aprotic Solvents. Tetrahedron Lett. 1976, 3791-3794.
  • Ramirez, F.; Marecek, J.F. Nucleophilic Catalysis of Phosphorylations by p-Nitrophenyldiphenyl Phosphate and by Alkyl Ethylene Phosphates in Aprotic Solvents. Tetrahedron Lett. 1977, 967-970.
  • Ramirez, F.; Marecek, J.F. Phosphoryl Transfer from Phosphomonoesters in Aprotic and Protic Solvents. Pure Appl. Chem. 1980, 52, 1021-1045.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.