1,440
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Raney-Ni reduction of phosphine sulfides

, , , , &
Pages 64-68 | Received 09 Apr 2016, Accepted 12 Aug 2016, Published online: 10 Nov 2016

References

  • (a) Lagasse, F.; Kagan, H. B. Chem. Pharm. Bull. 2000, 48, 315-324; (b) Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. Comprehensive Asymmetric Catalysis, Springer: Berlin, New York, 1999.
  • Ohff, M.; Holz, J.; Quirmbach, M.; Borner, A. Synthesis 1998, 1391-1415.
  • Pietrusiewicz, K. M.; Zablocka, M. Chem. Rev. 1994, 94, 1375-1411.
  • Imamoto, T.; Kusumoto, T.; Suzuki, N.; Sato, K. J. Am. Chem. Soc. 1985, 107, 5301-5303.
  • (a)Imamoto, T.; Tsuruta, H.; Wada, Y.; Masuda, H.; Yamaguchi, K. Tetrahedron Lett. 1995, 36, 8271-8274; (b) Mckinstry, L.; Livinghouse, T. Tetrahedron 1994, 50, 6145-6154; (c) Uziel, J.; Darcel, C.; Moulin, D.; Bauduin, C.; Juge, S. Tetrahedron: Asymmetry 2001, 12, 1441-1449.
  • (a) Naumann, K.; Zon, G.; Mislow, K. J. Am. Chem. Soc. 1969, 91, 7012-7023; (b) Horner, L.; Balzer, W. D. Tetrahedron Lett. 1965, 6, 1157-1162; (c) Cremer, S. E.; Chorvat, R. J. J. Org. Chem. 1967, 32, 4066-4070; (d) Marsi, K. L. J. Org. Chem. 1974, 39, 265-267; (e) Imamoto, T.; Kikuchi, S.; Miura, T.; Wada, Y. Org. Lett. 2001, 3, 87-90; (f) Hamada, Y.; Matsuura, F.; Oku, M.; Hatano, K.; Shioiri, T. Tetrahedron Lett. 1997, 38, 8961-8964; (g) Wu, H. C.; Yu, J. Q.; Spencer, J. B. Org. Lett. 2004, 6, 4675-4678; (h) Herault, D.; Nguyen, D. H.; Nuel, D.; Buono, G. Chem. Soc. Rev. 2015, 44, 2508-2528; (i) Bayardon, J.; Jugé, S., In P. C. J. Kamer; P. W. N. M. van Leeuwen (Ed.), Phosphorus(III) Ligands in Homogeneous Catalysis. Design and synthesis, Wiley: Chichester, 2012; pp. 355-390; (j) Grabulosa, A. P-Stereogenic Ligands in Enantioselective Catalysis; Royal Society of Chemistry: Cambridge, 2011
  • (a) Issleib, K.; Tzschach, A. Chem. Ber.-Recl. 1960, 93, 1852-1856; (b) King, R. B.; Cloyd, J. C.; Reimann, R. H. J. Org. Chem. 1976, 41, 972-977.
  • Niebergall, H.; Langenfeld, B. Chem. Ber. 1962, 95, 64-76.
  • Schmutzler, R.; Stelzer, O.; Weferling, N. Chem. Ber.-Recl. 1988, 121, 391-395.
  • (a) Field, L. D.; Wilkinson, M. P. Tetrahedron Lett. 1997, 38, 2779-2782; (b) Dilworth, J. R.; Zheng, Y. F.; Griffiths, D. V. J. Chem. Soc. Dalton. 1999, 1877-1881.
  • Niemi, T. A.; Coe, P. L.; Till, S. J. J. Chem. Soc. Perk. T. 2000, 1519-1528.
  • Kanemura, S.; Kondoh, A.; Yorimitsu, H.; Oshima, K. Org. Lett. 2007, 9, 2031-2033.
  • Zon, G.; Debruin, K. E.; Naumann, K.; Mislow, K. J. Am. Chem. Soc. 1969, 91, 7023-7027.
  • Corey, E. J.; Chen, Z. L.; Tanoury, G. J. J. Am. Chem. Soc. 1993, 115, 11000-11001.
  • Tang, W. J.; Zhang, X. M. Angew. Chem. Int. Edit. 2002, 41, 1612-1614.
  • Luckenbach, R. Tetrahedron Lett. 1971, 12, 2177-2181.
  • Romeo, R.; Wozniak, L. A.; Chatgilialoglu, C. Tetrahedron Lett. 2000, 41, 9899-9902.
  • (a) Gilbertson, S. R.; Chang, C. W. T. J. Org. Chem. 1998, 63, 8424-8431; (b) Gilbertson, S. R.; Wang, X. F. Tetrahedron 1999, 55, 11609-11618; (c) Gilbertson, S. R.; Wang, X. F. J. Org. Chem. 1996, 61, 434-435; (d) Cowen, B. J.; Miller, S. J. J. Am. Chem. Soc. 2007, 129, 10988-10989; (e) Gilbertson, S. R.; Fu, Z. Org. Lett. 2001, 3, 161-164; (f) Xu, G. P.; Gilbertson, S. R. Tetrahedron Lett. 2002, 43, 2811-2814.
  • Liu, D.; Dai, Q.; Zhang, X. M. Tetrahedron 2005, 61, 6460-6471.
  • (a) Cheemala, M. N.; Gayral, M.; Brown, J. M.; Rossen, K.; Knochel, P. Synthesis 2007, 3877-3885; (b) Jiang, B. A.; Lei, Y.; Zhao, X. L. J. Org. Chem. 2008, 73, 7833-7836; (c) Debono, N.; Labande, A.; Manoury, E.; Daran, J. C.; Poli, R. Organometallics 2010, 29, 1879-1882.
  • Thaler, T.; Geittner, F.; Knochel, P. Synlett 2007, 2655-2658.
  • (a) Nief, F.; Charrier, C.; Mathey, F.; Simalty, M. Tetrahedron Lett. 1980, 21, 1441-1444; (b) Tang, W. J.; Wang, W. M.; Zhang, X. M. Angew. Chem. Int. Edit. 2003, 42, 943-946; (c) Korff, C.; Helmchen, G. Chem. Commun. 2004, 530-531.
  • All reagents were purchased from Sigma-Aldrich, Strem, TCI and Alfa Aesar chemical companies and used without further purification. Analytical thin-layer chromatography (TLC) was performed using silica gel 60 F254 precoated plates (0.25 mm thickness) with a fluorescent indicator. Visualisation of TLC plates was performed by means of UV light or either KMnO4 or I2 stains. NMR spectra were recorded on Bruker Avance 500 MHz spectrometers, and chemical shifts are reported in ppm, and calibrated to residual solvent peaks at 7.27 ppm and 77.00 ppm for 1H and 13C in CDCl3 or internal reference compounds. The following abbreviations are used in reporting NMR data: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad). Coupling constants (J) are in Hz. Spectra are reported as follows: chemical shift (δ, ppm), multiplicity, integration, coupling constants (Hz). Products were purified by flash chromatography on silica gel 60 (230–400 mesh). MS spectra were recorded on Shimadzu LCMS IT-TOF spectrometer. Commercially not available compounds were obtained by known literature procedures. Phosphine sulfides were obtained from the corresponding phosphines in reactions with S8 and purified chromotagraphically. General procedure for Raney-Ni reduction of phosphine sulfides to phosphines. Phosphine sulfide (0.3 mmol) was added to Raney-Ni (2 g) in benzene (5 mL), that had been washed with ethanol (three times) and benzene (three times). The reaction mixture was stirred under argon at room temperature for 3 h, by which time the 31P NMR monitoring indicated the complete reduction of the phosphine sulfide to phosphine. The Raney-Ni was then filtered through a short plug of Celite under argon, and the filtrate was evaporated under reduced pressure to give the phosphine product as an oil. In reductions involving unsaturated phosphine sulfides the reactions were run under hydrogen atmosphere (balloon).
  • (SP)-(-)-9 was prepared from the corresponding phosphine.14 [α]20D= -4.88 (c =1.055, CHCl3); 1H NMR (500.13 MHz, CDCl3): δ = 2.36 (3H, d, J = 14.0), 3.67 (1H, s), 6.87 (1H, dd, J = 8.3, 5.3), 7.10–7.15 (1H, m), 7.35–7.45 (3H, m), 7.48–7.53 (1H, m), 7.69–7.76 (2H, m), 8.23 (1H, ddd, J = 16.5, 7.6, 1.7), 13C NMR (75.52 MHz, CDCl3): δ = 20.88 (d, J = 61.1), 55.32 (s), 111.1 (d, J = 5.91), 120.24 (d, J = 80.06), 121.1 (d, J = 12.89), 128.2 (d, J = 12.69), 130.0 (d, J = 10.93), 130.7 (d, J = 2.96), 134.0 (d, J = 2.39), 135.5 (d, J = 86.06), 135.7 (d, J = 10.34), 160.0 (d, J = 2.43), 31P NMR (202.45 MHz, CDCl3): δ = 36.73; HRMS (ESI) calcd for C14H15ONaPS [M+Na]+: 285.0473; found: 285.0468.
  • (RP)-(+)-10 was prepared from the corresponding phosphine.26 [α]20D= 6.35 (c = 1.31, CHCl3). 1H NMR (500.13 MHz, CDCl3): δ = 3.80 (3H, s), 7.03–7.07 (1H, m), 7.16–7.25 (2H, m), 7.30–7.36 (2H, m), 7.37–7.41 (1H, m), 7.43–7.56 (5H, m), 7.80–7.90 (3H, m), 7.83 (1H, d, J = 8.26), 8.52 (1H, d, J = 8.6), 13C NMR (75.52 MHz, CDCl3): δ = 55.42 (s), 117.51 (d, J = 12.58), 117.72 (d, J = 2.64), 124.26 (d, J = 14.21), 124.69 (d, J = 10.06), 126.58 (d, J = 35.72), 127.95 (d, J = 7.42), 128.60 (d, J = 12.58), 128.93 (d, J = 0.88), 129.60 (d, J = 14.59), 131.61 (d, J = 2.89), 132.46 (d, J = 10.56), 132.49 (d, J = 85.01), 133.01 (d, J = 10.69), 133.12 (d, J = 3.02), 134.01 (d, J = 90.17), 134.31 (d, J = 3.02), 159.75 (d, J = 15.59), 31P NMR (202.45 MHz, CDCl3): δ = 43.82, HRMS (ESI) calcd for C23H19ONaPS [M+Na]+: 397.0786; found: 397.0767.
  • Dziuba, K.; Flis, A.; Szmigielska, A.; Pietrusiewicz, K. M. Tetrahedron: Asymmetry 2010, 21, 1401-1405.
  • (SP)-(-)-11 was prepared from the corresponding phosphine oxide28 by the following experimental procedure. To a solution L-menthyl 2-methoxyphenyl (phenyl)phosphinoyl acetate (0.107 g, 0.25 mmol) and pyridine (0.1 mL, 1.25 mmol) in dry benzene (5 mL) trichlorosilane (0.13 mL, 2 mmol) was added dropwise. The mixture was heated at reflux temperature for 12 h. After cooling to room temperature the 31P NMR spectrum was recorded and indicated formation of diastereomericaly pure produt (RP)-(-)-L-menthyl 2-[(2-methoxyphenyl)(phenyl)phosphanyl]acetate (−23.52 ppm). Next, of sublimed sulfur (0.01 g) was added to the crude reaction mixture. Then, 30% aq. NaOH (10 mL) was carefully added until the organic and aqueous layers became separable and clear. After separation the aqueous layer was washed with benzene (2 x 10 mL), combined organic layers were washed with H2O (1 x 15 mL). The crude product was dried over anhydrous magnesium sulfate, filtered, and evaporated to give 0.89 g (81% yield) of (SP)-(-)-11. Anal. calcd. for C25H33O3PS C: 67.54, H: 7.48; found C: 67.71, H: 7.29. [α]D20 = -9.85 (c. 1.05, CHCl3). 31P NMR (202 MHz, CDCl3) δ = 36.61, 36.37. 1H NMR (500 MHz, CDCl3) δ = 8.28 (ddd, J = 17.2, 7.7, 1.8 Hz, 1H), 7.81 – 7.75 (m, 2H), 7.56 – 7.51 (m, 1H), 7.44 – 7.37 (m, 3H), 7.17 – 7.13 (m, 1H), 6.91 – 6.87 (m, 1H), 4.57 (td, J = 10.8, 4.3 Hz, 1H), 3.97 (dd, J = 15.1, 13.3 Hz, 1H), 3.74 (m, 1H), 3.74 (s, 3H), 1.92 – 1.86 (m, 1H), 1.81 – 1.78 (m, 1H), 1.72 (td, J = 7.0, 2.6 Hz, 1H), 1.61 – 1.53 (m, 2H), 1.40 – 1.30 (m, 1H), 1.08 – 1.01 (m, 1H), 0.99 – 0.89 (m, 1H), 0.83 (d, J = 6.6 Hz, 4H), 0.77 (d, J = 7.0 Hz, 3H), 0.75 – 0.67 (m, 1H), 0.65 (d, J = 6.9 Hz, 3H). 13C NMR (500 MHz, CDCl3) δ = 165.78 (d, J = 5.8 Hz), 159.83 (d, J = 2.3 Hz), 136.46 (d, J = 10.7 Hz), 134.30 (d, J = 87.7 Hz), 134.27 (d, J = 2.6 Hz), 131.09 (d, J = 3.2 Hz), 130.44 (d, J = 11.2 Hz), 128.25 (d, J = 13.0 Hz), 121.18 (d, J = 13.5 Hz), 118.69 (d, J = 82.1 Hz), 110.79 (d, J = 6.3 Hz), 75.60 (s), 55.37 (s), 46.67 (s), 40.67 (d, J = 50.9 Hz), 40.42 (s), 34.14 (s), 31.30 (s), 25.80 (s), 23.12 (s), 21.96 (s), 20.81 (s), 16.10 (s). HRMS (ESI) calcd for C25H33O3PS [M+H]+: 445.1961; found: 445.1974, diff. 1.3 ppm.
  • (a) Pietrusiewicz, K. M.; Wieczorek, W. Phosphor. Sulfur Silicon Relat. Elem. 1993, 82, 99-107; (b) Imamoto, T.; Oshiki, T.; Onozawa, T.; Kusumoto, T.; Sato, K. J. Am. Chem. Soc. 1990, 112, 5244-5252
  • (SP)-(-)-12 was prepared from the corresponding phosphine oxide30 by the following experimental procedure. To solution of phosphine oxide (100 mg, 0.31 mmol) in dry benzene (2mL) was added of phenylsilane (75 µL). The mixture was heated to reflux under an argon atmosphere until the completion of the reduction monitored by 31P NMR. As indicated the spectral data 2 diastereomeric produts (RP)-(-)-methyl(2-L-menthoxyethyl)(phenyl)phosphane (−39.89 ppm) and (SP)-(-)-methyl(2-(L-menthoxy)ethyl)phenylphosphane (−40.17 ppm) were formed in ratio 9:1. Next, sulfur (20 mg) was added and mixture was stirred under argon for 6 h. After evaporation of benzene crude sulfide was purified by column chromatography using DCM-hexane (5/1 v/v) as the eluent to afford 45 mg of sulfide as a colorless oil. Product was a mixture of 2 diastereoisomers SP:RP = 9:1. Yield 43%. [α]D20 -61.9 (c 2,35, CHCl3). HRMS (ESI) calcd for C19H31OPS [M+H]+: 339.1906; found: 339.1917, diff. 1.1 ppm. (SP)-(-)-12: 31P NMR (202 MHz, CDCl3) δ = 37.35; 1H NMR (500 MHz, CDCl3) δ = 0.72 (d, J = 17.0 Hz,3H), 0.85 (d, J = 17.0 Hz,3H), 0.94 (d, J = 6.7 Hz, 3H), 0.77–0.97 (m, 2H), 1.12–1.18 (m, 1H), 1.32–1.39 (m, 1H), 1.57–1.68 (m, 3H), 2.02 (d, J = 13.3 Hz, 3H), 1.98–2.05 (m, 1H), 2.15–2.19 (m, 1H), 2.26–2.34 (m, 1H), 2.48–2.51 (m, 1H), 3.00–3.05 (m, 1H), 3.52–3.59 (m, 1H), 4.09–4.17 (m, 1H), 7.49–7.56 (m, 3H), 7.91–7.95 (m, 2H); 13C NMR (500 MHz, CDCl3) δ = 16.4, 21.0, 21.9 (d, J = 56.3 Hz), 22.3, 23.4, 25.7, 31.5, 34.5, 35.7 (d, J = 57.6Hz), 40.4, 48.3, 62.5, 79.7, 128.6 (d, J = 11.8 Hz), 130.4, 131.5 (d, J = 2.7 Hz), 133.0 (d, J = 78.1Hz). (RP)-(-)-12: 31P NMR (202 MHz, CDCl3) δ = 36.87.
  • Pietrusiewicz, K. M.; Zabłocka M. Phosphor. Sulfur Silicon Relat. Elem. 1988, 40, 47-51
  • Pietrusiewicz, K. M.; Zabłocka M.; Monkiewicz J. J. Org. Chem. 1984, 49, 1522-1526
  • (a) Chooi, S. Y. M.; Siah, S. Y.; Leung, P. H.; Mok, K. F. Inorg. Chem. 1993, 32, 4812-4818; (b) Dunina, V. V.; Kuzmina, L. G.; Kazakova, M. Y.; Grishin, Y. K.; Veits, Y. A.; Kazakova, E. I. Tetrahedron: Asymmetry 1997, 8, 2537-2545.
  • Pakulski, Z.; Kwiatosz, R.; Pietrusiewicz, K. M. Tetrahedron Lett. 2003, 44, 5469-5472.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.