162
Views
7
CrossRef citations to date
0
Altmetric
Articles

Crystal structure, antibacterial activity and nanoparticles of Cd(II) complex derived from dithiophosphonate ligand

, , &
Pages 369-374 | Received 05 May 2017, Accepted 02 Jan 2018, Published online: 25 Jan 2018

References

  • Priscila, K.; Bianconi, F.; Rizuti, T. C.; Zanchet, D.; Alves, J.; Novak, M. A.; Graças Fialho, M.; Winnischofer, H. Structure and morphology of spinel MFe2O4 (M = Fe, Co, Ni) nanoparticles chemically synthesized from heterometallic complexes. J. Colloid Interf. Sci. 2011, 358, 39–46. doi:10.1016/j.jcis.2011.03.001.
  • Suber, L.; Peddis, D. Approaches to synthesis and characterization of spherical and anisometric metal oxide magnetic nanomaterials. Magn. Nanomater. 2009, 5, 431.
  • Babes, L.; Denizot, B.; Tanguy, G.; Le Jeune, J. J.; Jallet, P. Synthesis of Iron Oxide Nanoparticles Used as MRI Contrast Agents: A Parametric Study. J. Colloid Interf. Sci. 1999, 212, 474–482. doi:10.1006/jcis.1998.6053.
  • Gupta, A. K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995–4021. doi:10.1016/j.biomaterials.2004.10.012.
  • Jun, Y. W.; Huh, Y. M.; Choi, J. S.; Lee, J. H.; Song, H. T.; Kim, S.; Yoon, S.; Kim, K. S.; Shin, J. S.; Suh, J. S.; et al. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J. Am. Chem. Soc. 2005, 127, 5732–5733. doi:10.1021/ja0422155.
  • Neuberger, T.; Schopf, B.; Hofmann, H.; Hofmann, M.; Rechenberg, B. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. J. Magn. Mater. 2005, 293, 483–496. doi:10.1016/j.jmmm.2005.01.064.
  • Pankhurst, Q. A.; Connolly, J.; Jones, S. K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 2003, 36, R167–R181. doi:10.1088/0022-3727/36/13/201.
  • Huh, Y. M.; Jun, Y. W.; Song, H. T.; Kim, S.; Choi, J. S.; Lee, J. H.; Yoon, S.; Kim, K. S.; Shin, J. S.; Suh, J. S.; et al. In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J. Am. Chem. Soc. 2005, 127, 12387–12391. doi:10.1021/ja052337c.
  • Ferrando, R.; Jellinek, J.; Johnston, R. L. From Theory to Applications of Alloy Clusters and Nanoparticles. Chem. Rev. 2008, 108, 845–910. doi:10.1021/cr040090g.
  • Shevchenko, E. V.; Talapin, D. V.; Kotov, N. A.; O'Brien, S.; Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 2006, 439, 55–9. doi:10.1038/nature04414.
  • Bara, A. C.; Silvestru, C.; Haiduc, I. Activity of some diphenyltin(IV) and diphenylantimony(III) derivatives on in vitro and in vivo Ehrlich ascites tumor. Anticancer Res. 1991, 11, 1651–1656.
  • Roy, N. K. Chemistry of Pesticides. Pesticides A 1990, 13, 1989–1990.
  • Cavell, R. G.; Day, E. D.; Byers, W.; Watkins, P. M. Metal complexes of substituted dithiophosphinic acids. V. Complexes of manganese, iron, and cobalt. Inorg. Chem. 1972, 11, 1759. doi:10.1021/ic50114a007.
  • Haiduc, I. Supramolecular associations, secondary bonds, quasi-cyclic structures and heterogeometrism in metal derivatives of phosphorus- and arsenic-based thioacids and oxo analogs. Coord. Chem. Rev. 1997, 158, 325. doi:10.1016/S0010-8545(97)90063-1.
  • Pinkerton, A. A.; Ahlers, F. P.; Greiwing, H. F.; Krebs, B. Dithiophosphinate complexes of the UO22+ ion containing a coordinated water molecule solid state structures and stereochemical rigidity in solution. Inorg. Chim. Acta 1997, 257, 77. doi:10.1016/S0020-1693(96)05460-6.
  • Montazerozohori, M.; Zahedi, S.; Nasr-Esfahani, M; Naghiha, A. Some new cadmium complexes: Antibacterial/antifungal activity and thermal behavior. J. Ind. Eng. Chem. 2014, 20, 2463–2470 doi:10.1016/j.jiec.2013.10.027.
  • Montazerozohori, M.; Nazaripour, A.; Masoudiasl A.; Naghiha, R.; Dusek M.; Kucerakova, M. Antimicrobial activity, DNA cleavage, thermal analysis data and crystal structure of some new CdLX2 complexes: A supramolecular network. Mater. Sci. Eng. C 2015, 55, 462–470. doi:10.1016/j.msec.2015.05.061.
  • Montazerozohori, M.; Mojahedi, S.; Naghiha, A. Thermal analyses data and antimicrobial screening of some new nano-structure five coordinated cadmium complexes. J. Ind. Eng. Chem. 2015, 22, 248. doi:10.1016/j.jiec.2014.07.017.
  • Palacios-Hernández, T.; Höpfl, H.; Sánchez-Salas, J. L.; González-Vergara, E.; Pérez-Benítez, A.; Quiroz-Alfaro, M. A.; Méndez-Rojas, M. A. In vitro antibacterial activity of meclofenamate metal complexes with Cd(II), Pb(II), Co(II), and Cu(II). Crystal structures of [Cd(C14H10NO2Cl2)⋅(CH3OH)]n and [Cu(C14H10NO2Cl2)2(C5H5N)2]. J. Inorg. Biochem. 2014, 139, 85–92. doi:10.1016/j.jinorgbio.2014.06.008.
  • Casas, J. S.; Garcia, M. S.; Sanchez, A.; Sordo, J.; Castellano, E. E.; Schpector, Z. Synthesis, crystal structure and spectroscopic properties of bis(diphenyldithiophosphinato)cadmium(II). J. Inorg. Chim. Acta 1994, 219, 115. doi:10.1016/0020-1693(94)03822-8.
  • Byrom, C.; Malik, M. A.; O'Brien, P.; White, A. J. P.; Williams, D. J. Synthesis and X-ray single crystal structures of bis(diisobutyldithiophosphinato)cadmium(II) or zinc(II): Potential single-source precursors for II/VI materials. Polyhedron 2000, 19, 211. doi:10.1016/S0277-5387(99)00352-6.
  • Gross, K. J.; Züttel, A.; Schlapbach, L. On the possibility of metal hydride formation: Part I. The synthesis of MgNi3B2 by mechanical milling and sintering. J. Alloys Compd. 1988, 274, 234–8. doi:10.1016/S0925-8388(98)00502-7.
  • Shimazaki, Y.; Kobayashi, Y.; Yamada, S.; Miwa, T.; Konno, M. Preparation and characterization of aqueous colloids of Pt-Ru nanoparticles. J Colloid Interf. Sci. 2005, 292, 122–6. doi:10.1016/j.jcis.2005.05.052.
  • Lu, K.; Wang, J. T.; Wei, W. D. A new method for synthesizing nanocrystalline alloys. J. Appl. Phys. 1991, 69, 522–4. doi:10.1063/1.347698.
  • Lin, S. C.; Chen, J. Y.; Hsieh, Y. F.; Wu, P. W. A facile route to prepare PdPt alloys for ethanol electro-oxidation in alkaline electrolyte. Mater. Lett. 2011, 65, 215–8. doi:10.1016/j.matlet.2010.10.006.
  • Sumithra, S.; Misra, D. K.; Wei, C.; Gabrisch, H.; Poudeu, P. F. P.; Stokes, K. L. Solvothermal synthesis and analysis of Bi1–xSbx nanoparticles. Mater. Sci. Eng. B 2011, 176, 246–51. doi:10.1016/j.mseb.2010.12.004.
  • Chen, H. J.; Li, Z. W.; Wu, Z. S.; Zhang, Z. J. A novel route to prepare and characterize Sn–Bi nanoparticles. J. Alloys Compd. 2005, 394, 282–5. doi:10.1016/j.jallcom.2004.10.044.
  • Safarifard, V.; Morsali, A. Sonochemical syntheses and characterization of nano-sized lead(II) coordination polymer with ligand 1H-1,2,4-triazole-3-carboxylate. Ultrason Sonochem 2012, 19, 300–306. doi:10.1016/j.ultsonch.2011.03.019.
  • Aboutorabi, L.; Morsali, A. Sonochemical syntheses and characterization of nano-structured three-dimensional lead(II) coordination polymer constructed of fumaric acid. Ultrason Sonochem 2011, 18, 407–411. doi:10.1016/j.ultsonch.2010.07.012.
  • Sadeghzadeh, H.; Morsali, A. Sonochemical synthesis and characterization of nano-belt lead(II) coordination polymer: New precursor to produce pure phase nano-sized lead(II) oxide. Ultrason Sonochem 2011, 18, 80–84. doi:10.1016/j.ultsonch.2010.01.011.
  • Soltanzadeh, N.; Morsali, A. Sonochemical synthesis of a new nano-structures bismuth(III) supramolecular compound: New precursor for the preparation of bismuth(III) oxide nano-rods and bismuth(III) iodide nano-wires. Ultrason Sonochem 2010, 17, 139–144. doi:10.1016/j.ultsonch.2009.05.003.
  • Saglam, E. G.; Ebinc, A.; zeyrek, C. T.; Unver, H.; Hokelek, T. Structural studies on some dithiophosphonato complexes of Ni(II), Cd(II), Hg(II) and theoretical studies on a dithiophosphonato Ni(II) complex using density functional theory. J. Mol. Struct. 2015, 1099, 490–501. doi:10.1016/j.molstruc.2015.06.087.
  • Banaei, A.; Saadat, A.; Mohammad Goli, M.; McArdle, P.; Pourbasheer, E.; Pargolghasemi, P. Synthesis, characterization, and molecular structures of Ni(II) and Cd(II) complexes derived from dithiophosphonate. Heteroatom 2016, 27, 353–360. doi:10.1002/hc.21345.
  • Bernstein, J.; Davis, R.; Shimoni, L.; Chang, N. Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals. Angew. Chem. Int. Ed. 1995, 34, 1555–1573. doi:10.1002/anie.199515551.
  • (a) McKinnon, J. J.; Spackman, M. A.; Mitchell, A. S. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr. 2004, B60, 627–668; (b) Spackman, M. A.; McKinnon, J. J. Fingerprinting intermolecular interactions in molecular crystals. Cryst. Eng. Comm. 2002, 4, 378–392. doi:10.1107/S0108768104020300.
  • Wolff, S. K.; Grimwood, D. J.; McKinnon, J. J.; Turner, M. J.; Jayatilaka, D.; Spackman, M. A.. Crystal explorer 3.1; University of Western Australia: Crawley, Western, Australia, 2013.
  • Spackman, M. A.; Jayatilaka, D. Hirshfeld surface analysis. Cryst. Eng. Comm. 2009, 11, 19–32. doi:10.1039/B818330A.
  • Kamalakannan, P.; Venkappayya, D. J. Synthesis and characterization of cobalt and nickel chelates of 5-dimethylaminomethyl-2-thiouracil and their evaluation as antimicrobial and anticancer agents. Inorg. Biochem. 2002, 90, 22–37. doi:10.1016/S0162-0134(02)00413-0.
  • Greenwood, D.. Antimicrobial chemotherapy; Oxford University Press: New York, 1989.
  • Vincent, J. G.; Vincent, H. W. Filter paper disc modification of Oxford cup Penicillin determination. Proc. Soc. Exp. Biol. Med. 1994, 55, 162–164. doi:10.3181/00379727-55-14502.
  • Sheldrick, G. M. SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8.
  • Sheldrick, G. Short history of SHELX. Acta Crystallogr. 2008, A64, 112–122. doi:10.1107/S0108767307043930.
  • McArdle, P. SORTX - a program for on-screen stick-model editing and autosorting of SHELX files for use on a PC. J. Appl. Cryst. 1995, 28, 65–66. doi:10.1107/S0021889894010642.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.