674
Views
13
CrossRef citations to date
0
Altmetric
Articles

Experimental and theoretical investigation of antioxidant activity and capacity of thiosemicarbazones based on isatin derivatives

ORCID Icon, &
Pages 493-499 | Received 08 Oct 2017, Accepted 11 Mar 2018, Published online: 13 Apr 2018

References

  • Ramachandran, R.; Rani, M.; Kabilan, S. Design, Synthesis and Biological Evaluation of Novel 2-[(2,4-Diaryl-3-Azabicyclo[3.3.1]nonan-9-Ylidene)hydrazono]-1,3-Thiazolidin-4-Ones as a New Class of Antimicrobial Agents. Bioorg. Med. Chem. Lett. 2009, 19, 2819–2823. DOI: 10.1016/j.bmcl.2009.03.093.
  • Da Silva, C. M.; Da Silva, D. L.; Modolo, L. V.; Alves, R. B.; De Resende, M. A.; Cleide, V. B.; De Fatima, M. A. Synthesis of Aryl Aldimines and Their Activity Against Fungi of Clinical Interest J. Adv. Res. 2011, 2, 1–8. DOI: 10.1016/j.jare.2010.05.004.
  • Parrilha, G. L.; Da Silva, J. G.; Gouveia, L. F.; Gasparoto, A. K.; Dias, R. P.; Rocha, W. R.; Santos, D. A.; Speziali, N. L.; Beraldo, H. Pyridine-Derived Thiosemicarbazones and Their Tin (IV) Complexes with Antifungal Activity Against Candida Spp. Eur. J. Med. Chem. 2011, 46, 1473–1482. DOI: 10.1016/j.ejmech.2011.01.041.
  • Alomar, K.; Gaumet, V.; Allain, M.; Bouet, G.; Landreau, A. Synthesis, Crystal Structure, Characterisation, and Antifungal Activity of 3-thiophene Aldehyde Semicarbazone (3STCH), 2, 3-thiophene dicarboxaldehyde bis (semicarbazone) (2, 3BSTCH 2) and Their Nickel (II) Complexes. J. Inorg. Biochem. 2012, 115, 36–43. DOI: 10.1016/j.jinorgbio.2012.04.022.
  • Garoufis, A.; Hadjikakou, S. K.; Hadjiliadis, N. Palladium Coordination Compounds as Anti-Viral, Anti-Fungal, Anti-Microbial and Anti-Tumor Agents. Coord. Chem. Rev. 2009, 253, 1384–1397. DOI: 10.1016/j.ccr.2008.09.011.
  • Salas, P. F.; Herrmann, C.; Orvig, C. Metalloantimalarials. Chem. Rev. 2013, 113, 3450–3492. DOI: 10.1021/cr3001252.
  • Hosseini-Yazdi, S. A.; Mirzaahmadi, A.; Khandar, A. A.; Eigner, V.; Dušek, M.; Lotfipour, F.; Mahdavi, M.; Soltani, S.; Dehghan, G. Synthesis, Characterization and in Vitro Biological Activities of New Water-Soluble copper(II), zinc(II), and nickel(II) Complexes with Sulfonato-Substituted Schiff Base Ligand. Inorg. Chim. Acta. 2017, 458, 171–180. DOI: 10.1016/j.ica.2017.01.005.
  • Hosseini-Yazdi, S. A.; Mirzaahmadi, A.; Khandar, A. A.; Eigner, V.; Dušek, M.; Mahdavi, M.; Soltani, S.; Lotfipour, F.; White, J. Reactions of copper(II), nickel(II), and zinc(II) Acetates with a New Water-Soluble 4-Phenylthiosemicarbazone Schiff Base Ligand: Synthesis, Characterization, Unexpected Cyclization, Antimicrobial, Antioxidant, and Anticancer Activities. Polyhedron. 2017, 124, 156–165. DOI: 10.1016/j.poly.2016.12.004.
  • Brodowska, K.; Correia, I.; Garribba, E.; Marques, F.; Klewicka, E.; Łodyga-Chruscińska, E.; Pessoa, J. C.; Dzeikala, A.; Chrusciński, L. Coordination Ability and Biological Activity of a Naringenin Thiosemicarbazone. J. Inorg. Biochem. 2016, 165, 36–48. DOI: 10.1016/j.jinorgbio.2016.09.014.
  • Sathiyaraj, S.; Sampath, K.; Jayabalakrishnan, C. Synthesis, Spectral Characterization, DNA Binding, DNA Cleavage, and Antioxidant Studies of Ruthenium (III) Heterocyclic Thiosemicarbazone Complexes. Synt. React. Inor. Metal-Org. Nano-Metal Chem. 2014, 44, 1261–1271.
  • Degola, F.; Morcia, C.; Bisceglie, F.; Mussi, F.; Tumino, G.; Ghizzoni, R.; Pelosi, G.; Terzi, V.; Buschini, A.; Restivo, F. M.; et al. In vitro Evaluation of the Activity of Thiosemicarbazone Derivatives against Mycotoxigenic Fungi Affecting Cereals. Int. J. Food Microbiol. 2015, 200, 104–111. DOI: 10.1016/j.ijfoodmicro.2015.02.009.
  • Dutta, S.; Padhye, S.; Priyadarsini, K. I.; Newton, C. Antioxidant and Antiproliferative Activity of Curcumin Semicarbazone. Bioorg. & Medi. Chem. Lett. 2005, 15, 2738–2744.
  • Goel, S.; Chandra, S.; Dwivedi, S. D. Synthesis, Spectral and Biological Studies of Copper (II) and Iron (III) Complexes Derived from 2-Acetyl Benzofuran Semicarbazone and 2-Acetyl Benzofuran Thiosemicarbazone. J. Saudi Chem. Socie. 2016, 20, 651–660.
  • Kandemirli, F.; Arslan, T.; Karadayı, N.; Ebenso, E. E.; Koksoy, B. Synthesis and Theoretical Study of 5-Methoxyisatin-3-(N-cyclohexyl) Thiosemicarbazone and Its Ni (II) and Zn (II) Complexes. J. Mol. Struct. 2009, 938, 89–96. DOI: 10.1016/j.molstruc.2009.09.009.
  • Jagadeesh, M.; Lavanya, M.; Kalangi, S. K.; Sarala, Y.; Ramachandraiah, C.; Reddy, A. V. Spectroscopic Characterization, Antioxidant and Antitumour Studies of Novel Bromo Substituted Thiosemicarbazone and Its Copper (II), Nickel (II) and Palladium (II) Complexes. Spectrochim. Acta Part A: Mol. Biomol. Spect. 2015, 135, 180–184. DOI: 10.1016/j.saa.2014.06.141.
  • Ceylan, B. I.; Deniz, N. G.; Kahraman, S.; Ulkuseven, B. Cis-Dioxomolybdenum (VI) Complexes of a New ONN Chelating Thiosemicarbazidato Ligand; Synthesis, Characterization, Crystal, Molecular Structures and Antioxidant Activities. Spectrochim. Acta Part A: Mol. Biomol. Spect. 2015, 141, 272–277. DOI: 10.1016/j.saa.2015.01.056.
  • Ramachandran, E.; Thomas, S. P.; Poornima, P.; Kalaivani, P.; Prabhakaran, R.; Padma, V.; Natarajan, K. Evaluation of DNA Binding, Antioxidant and Cytotoxic Activity of Mononuclear Co (III) Complexes of 2-Oxo-1, 2-Dihydrobenzo [h] Quinoline-3-Carbaldehyde Thiosemicarbazones. European J. Medi. Chem. 2012, 50, 405–415.
  • Prabhakaran, R.; Kalaivani, P.; Huang, R.; Poornima, P.; Padma, V.; Dallemer, F.; Natarajan, K. DNA Binding, Antioxidant, Cytotoxicity (MTT, Lactate Dehydrogenase, NO), and Cellular Uptake Studies of Structurally Different Nickel (II) Thiosemicarbazone Complexes: Synthesis, Spectroscopy, Electrochemistry, and X-ray Crystallography. J. Biol. Inorg. Chem. 2013, 18, 233–247. DOI: 10.1007/s00775-012-0969-x.
  • Byrnes, R. W.; Mohan, M.; Antholine, W. E.; Xu, R. X.; Petering, D. H. Oxidative Stress Induced by a Copper-Thiosemicarbazone Complex. Biochem. 1990, 29, 7046–7053. DOI: 10.1021/bi00482a014.
  • Kowol, C. R.; Heffeter, P.; Miklos, W.; Gille, L.; Trondl, R.; Cappellacci, L.; Berger, W.; Keppler, B. K. Mechanisms Underlying Reductant-Induced Reactive Oxygen Species Formation by Anticancer Copper (II) Compounds. J. Biol. Inorg. Chem. 2012, 17, 409–423. DOI: 10.1007/s00775-011-0864-x.
  • Antholine, W. E.; Taketa, F. Effects of 2-Formylpyridine Monothiosemicarbazonato Copper II on Red Cell Components. J. Inorg. Biochem. 1984, 20, 69–78. DOI: 10.1016/0162-0134(84)80007-0.
  • Sîrbu, A.; Palamarciuc, O.; Babak, M. V.; Lim, J. M.; Ohui, K.; Enyedy, E. A.; Shova, S.; Darvasiová, D.; Rapta, P.; Ang, W. H.; et al. Copper (ii) Thiosemicarbazone Complexes Induce Marked ROS Accumulation and Promote Nrf2-Mediated Antioxidant Response in Highly Resistant Breast Cancer Cells. Dalton Trans. 2017, 46, 3833–3847. DOI: 10.1039/C7DT00283A.
  • Shahidi, F.; Zhong, Y. Lipophilized Epigallocatechin Gallate (EGCG) Derivatives as Novel Antioxidants. J. Agr. Food Chem. 2011, 59, 6526–6533. DOI: 10.1021/jf104750m.
  • Manikandan, R.; Vijayan, P.; Anitha, P.; Prakash, G.; Viswanathamurthi, P.; Butcher, R. J.; Velmurugan, K.; Nandhakumar, R. Synthesis, Structure and in Vitro Biological Activity of Pyridoxal N (4)-Substituted Thiosemicarbazone Cobalt (III) Complexes. Inorg. Chim. Acta. 2014, 421, 80–90. DOI: 10.1016/j.ica.2014.05.035.
  • Yıldogan-Beker, B.; Bakır, T.; Sonmezoglu, I.; Imer, F.; Apak, R. Antioxidant Protective Effect of Flavonoids on Linoleic Acid Peroxidation Induced by Copper (II)/ascorbic Acid System. Chem. Phys. Lipids. 2011, 164, 732–739.
  • Mihaljevic, B.; Katusin-Razem, B.; Razem, D. The Reevaluation of the Ferric Thiocyanate Assay for Lipid Hydroperoxides with Special Considerations of the Mechanistic Aspects of the Response. Free Radic. Biol. Med. 1996, 21, 53–63. DOI: 10.1016/0891-5849(95)02224-4.
  • Bakır, T.; Sonmezoglu, I.; Imer, F.; Apak, R. Polar Paradox Revisited: Analogous Pairs of Hydrophilic and Lipophilic Antioxidants in Linoleic Acid Emulsion Containing Cu (II). J. Sci. Food Agric. 2013, 93, 2478–2485. DOI: 10.1002/jsfa.6063.
  • Yen, G. C.; Hsieh, C. L. Antioxidant Activity of Extracts from Du-Zhong (Eucommia ulmoides) toward Various Lipid Peroxidation Models in Vitro. J. Agric. Food Chem. 1998, 46, 3952–3957.
  • Brand-Williams, W.; Cuvelier, M. E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. Lebensm.-Wiss.-Technol. 1995, 28, 25–30. DOI: 10.1016/S0023-6438(95)80008-5.
  • Huang, D.; Ou, B.; Prior, L. The Chemistry Behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005, 53, 1841–1856.
  • Frankel, E. N.; Meyer, A. S. The Problems of Using One-Dimensional Methods to Evaluate Multifunctional Food and Biological Antioxidants. J. Sci. Food Agric. 2000, 80, 1925–1941. DOI: 10.1002/1097-0010(200010)80:13<1925::AID-JSFA714>3.0.CO;2-4.
  • Mukherjee, S.; Pawar, N.; Kulkarni, O.; Nagarkar, B.; Thopte, S.; Bhujbal, A.; Pawar, P. Evaluation of Free-Radical Quenching Properties of Standard Ayurvedic Formulation Vayasthapana Rasayana. BMC Complement. Alter. Medic. 2011, 11, 38–43.
  • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; et al. Gaussian 09, Revision D.01. Gaussian, Inc.: Wallingford CT, 2009.
  • Hohenberg, K.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. B. 1964, 136, 864–871. DOI: 10.1103/PhysRev.136.B864.
  • Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. A. 1965, 140, 1133–1138. DOI: 10.1103/PhysRev.140.A1133.
  • Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B. 1988, 37, 785–789.
  • Wright, J. S.; Johnson, E. R.; DiLabio, G. A. Predicting the Activity of Phenolic Antioxidants: Theoretical Method, Analysis of Substituent Effects, and Application to Major Families of Antioxidants. J. Am. Chem. Soc. 2001, 123, 1173–1183. DOI: 10.1021/ja002455u.
  • Klein, E.; Rimarcik, J.; Lukes, V. DFT/B3LYP Study of the O‒H Bond Dissociation Enthalpies and Proton Affinities of Para- and Meta-Substituted Phenols in Water and Benzene. Acta. Chim. Slovaca. 2009, 2, 37–51.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.