315
Views
2
CrossRef citations to date
0
Altmetric
Articles

CO2 transformation under mild conditions using tripolyphosphate-grafted KCC-1-NH2

, &
Pages 535-544 | Received 24 Sep 2017, Accepted 18 Mar 2018, Published online: 19 Apr 2018

References

  • He, J. M.; Sun, Y.; Han, B. Green Carbon Science: Scientific Basis for Integrating Carbon Resource Processing, Utilization, and Recycling. Angew. Chem., Int. Ed. 2013, 52, 9620–9633. doi:10.1002/anie.201209384.
  • Honda, M.; Tamura, M.; Nakagawa, Y.; Tomishige, K. Catalytic CO2 conversion to organic carbonates with alcohols in combination with dehydration system. Catal. Sci. Technol. 2014, 4, 2830–2845. doi:10.1039/C4CY00557K.
  • Tanaka, R.; Yamashita, M.; Nozaki, K. Catalytic Hydrogenation of Carbon Dioxide Using Ir(III)–Pincer Complexes. J. Am. Chem. Soc. 2009, 131, 14168–14169. doi:10.1021/ja903574e.
  • Yoshida, M.; Hara, N.; Okuyama, S. Catalytic production of urethanes from amines and alkyl halides in supercritical carbon dioxide. Chem. Commun. 2000, 36, 151–152. doi:10.1039/a908819i.
  • Vara, B. A.; Struble, T. J.; Wang, W.; Dobish, M. C.; Johnston, J. N. Enantioselective Small Molecule Synthesis by Carbon Dioxide Fixation using a Dual Brønsted Acid/Base Organocatalyst. J. Am. Chem. Soc. 2015, 137, 7302–7305. doi:10.1021/jacs.5b04425.
  • Wesselbaum, S.; vomStein, T.; Klankermayer, J.; Leitner, W. Hydrogenation of Carbon Dioxide to Methanol by Using a Homogeneous Ruthenium-Phosphine Catalyst. Angew. Chem., Int. Ed. 2012, 51, 7499–7502. doi:10.1002/anie.201202320.
  • Darensbourg, D. J.; Moncada, A. I.; Choi, W.; Reibenspies, J. H. Mechanistic Studies of the Copolymerization Reaction of Oxetane and Carbon Dioxide to Provide Aliphatic Polycarbonates Catalyzed by (Salen)CrX Complexes. J. Am. Chem. Soc. 2008, 130, 6523–6533. doi:10.1021/ja800302c.
  • Aurelio, L.; Brownlee, R. T. C.; Hughes, A. B. Synthetic Preparation of N-Methyl-α-amino Acids. Chem. Rev. 2004, 104, 5823–5846. doi:10.1021/cr030024z.
  • Chung, C. W. Y.; Toy, P. H. Chiral auxiliaries in polymer-supported organic synthesis. Tetrahedron: Asymmetry 2004, 15, 387–399. doi:10.1016/j.tetasy.2003.12.015.
  • Mukhtar, T. A.; Wright, G. D. Streptogramins, Oxazolidinones, and Other Inhibitors of Bacterial Protein Synthesis. Chem. Rev. 2005, 105, 529–542. doi:10.1021/cr030110z.
  • Wan, H.; Wu, Z.; Chen, W.; Guan, G.; Cai, Y.; Chen, C.; Li, Z.; Liu, X. Heterogenization of ionic liquid based on mesoporous material as magnetically recyclable catalyst for biodiesel production. J. Mol. Catal. A: Chem. 2015, 398, 127–132. doi:10.1016/j.molcata.2014.12.002.
  • Litschauer, M.; Neouze, M.A. Nanoparticles Connected through an Ionic Liquid-Like Network. J. Mater. Chem. 2008, 18, 640–646. doi:10.1039/B713442H.
  • Sadeghzadeh, S.M. Spidery catalyst for the synthesis of quinazoline-2,4(1H,3H)-diones. Catal. Sci. Technol. 2016, 6, 1435–1441. doi:10.1039/C5CY01543J.
  • Zhang, Y.; Zhang, Y.; Pei, Q.; Feng, T.; Mao, H.; Zhang, W.; Wu, S.; Liu, D.; Wang, H.; Song, X.M. Ionic Liquid-Modified Metal Sulfides/Graphene Oxide Nanocomposites for Photoelectric Conversion. Appl. Surf. Sci. 2015, 346, 194–200. doi:10.1016/j.apsusc.2015.03.213.
  • Li, P.H.; Li, B.L.; Hu, H.C.; Zhao, X.N.; Zhang, Z.H. Ionic Liquid Supported on Magnetic Nanoparticles as Highly Efficient and Recyclable Catalyst for the Synthesis of β-Keto Enol Ethers. Catal. Commun. 2014, 46, 118–122. doi:10.1016/j.catcom.2013.11.025.
  • Sobhani, S.; Honarmand, M. Ionic Liquid Immobilized on γ-Fe2O3 Nanoparticles: A New Magnetically Recyclable Heterogeneous Catalyst for One-Pot Three-Component Synthesis of 2-Amino-3,5-Dicarbonitrile-6-Thio-Pyridines. Appl. Catal., A 2013, 467, 456–462. doi:10.1016/j.apcata.2013.08.006.
  • Hamadi, H.; Kooti, M.; Afshari, M.; Ghiasifar, Z.; Adibpour, N. Magnetic Nanoparticle supported Polyoxometalate: An Efficient and Reusable catalyst for Solvent-Free Synthesis of a-Aminophosphonates. J. Mol. Catal. A: Chem. 2013, 373, 25–29. doi:10.1016/j.molcata.2013.02.018.
  • Liu, Y.; Tian, A.; Wang, X.; Qi, J.; Wang, F.; Ma, Y.; Ito, Y.; Wei, Y. Fabrication of Chiral Amino Acid Ionic Liquid Modified Magnetic Multifunctional Nanospheres for Centrifugal Chiral Chromatography Separation of Racemates. J. Chromatogr. A 2015, 1400, 40–46. doi:10.1016/j.chroma.2015.04.045.
  • Liu, W.; Wang, D.; Duan, Y.; Zhang, Y.; Bian, F. Palladium Supported on Poly (Ionic Liquid) Entrapped Magnetic Nanoparticles as a Highly Efficient and Reusable Catalyst for the Solvent-Free Heck Reaction. Tetrahedron Lett 2015, 56, 1784–1789. doi:10.1016/j.tetlet.2015.02.047.
  • Sadeghzadeh, S.M. Ionic Liquid Immobilized onto Fibrous Nano-Silica: A Highly Active and Reusable Catalyst for the Synthesis of Quinazoline-2,4(1H,3H)-Diones. Catal. Commun. 2015, 72, 91–96. doi:10.1016/j.catcom.2015.09.016.
  • Sadeghzadeh, S. M. PbS Based Ionic Liquid Immobilized onto Fibrous Nano-Silica as Robust and Recyclable Heterogeneous Catalysts for the Hydrogen Production by Dehydrogenation of Formic Acid. Microporous Mesoporous Mater, 2016, 234, 310–316. doi:10.1016/j.micromeso.2016.07.040.
  • Wang, P.; Kong, A.G.; Wang, W.J.; Zhu, H.Y.; Shan, Y.K. Facile Preparation of Ionic Liquid Functionalized Magnetic Nano-Solid Acid Catalysts for Acetalization Reaction. Catal. Lett. 2010, 135, 159–164. doi:10.1007/s10562-010-0271-x.
  • Sadeghzadeh, S. M. Ultrasound-Promoted Green Approach for the Synthesis of Thiazoloquinolines Using Gold(III) Dipyridine Complex Immobilized on SBA-15 as Nano Catalysts at Room Temperature. RSC Adv 2015, 5, 68947–68952. doi:10.1039/C5RA11829H.
  • Sadeghzadeh, S.M.; Zhiani, R.; Emrani, S.; Abasian, M. Synthesis of 3-Sulfenylindoles by Pd (II) Nanoclusters Confined Within Metal-Organic Framework Fibers in Aqueous Solution. J. Organomet. Chem. 2018, 855, 1–6. doi:10.1016/j.jorganchem.2017.11.027.
  • Polshettiwar, V.; Cha, D.; Zhang, X. X.; Basset, J. M. High–Surface–Area Silica Nanospheres (KCC–1) with a Fibrous Morphology. Angew. Chem., Int. Ed. 2010, 49, 9652–9656. doi:10.1002/anie.201003451.
  • Lilly Thankamony, A.S.; Lion, C.; Pourpoint, F.; Singh, B.; Perez Linde, A.J.; Carnevale, D.; Bodenhausen, G.; Vezin, H.; Lafon, O.; Polshettiwar, V. Insights into the Catalytic Activity of Nitridated Fibrous Silica (KCC-1) Nanocatalysts from 15N and 29Si NMR Spectroscopy Enhanced by Dynamic Nuclear Polarization. Angew. Chem., Int. Ed. 2015, 54, 2190–2193. doi:10.1002/anie.201406463.
  • Bouhrara, M.; Ranga, C.; Fihri, A.; Shaikh, R. R.; Sarawade, P.; Emwas, A. H.; Hedhili, M. N.; Polshettiwar, V. Nitridated Fibrous Silica (KCC-1) as a Sustainable Solid Base Nanocatalyst. ACS Sustainable Chem. Eng. 2013, 1, 1192–1199. doi:10.1021/sc400126h.
  • Dhiman, M.; Chalke, B.; Polshettiwar, V. Efficient Synthesis of Monodisperse Metal (Rh, Ru, Pd) Nanoparticles Supported on Fibrous Nanosilica (KCC-1) for Catalysis. ACS Sustainable Chem. Eng. 2015, 3, 3224–3230. doi:10.1021/acssuschemeng.5b00812.
  • Fihri, A.; Bouhrara, M.; Cha, D.; Almana, N.; Polshettiwar, V. Fibrous Nano-Silica (KCC-1)-Supported Palladium Catalyst: Suzuki Coupling Reactions Under Sustainable Conditions. ChemSusChem 2012, 5, 85–89. doi:10.1002/cssc.201100379.
  • Fihri, A.; Bouhrara, M.; Patil, U.; Cha, D.; Saih, Y.; Polshettiwar, V. Fibrous Nano-Silica Supported Ruthenium (KCC-1/Ru): A Sustainable Catalyst for the Hydrogenolysis of Alkanes with Good Catalytic Activity and Lifetime. ACS Catal., 2012, 2, 1425–1431. doi:10.1021/cs300179q.
  • Sadeghzadeh, S.M.; Zhiani, R.; Emrani, S. Pd/APTPOSS@KCC-1 as a New and Efficient Support Catalyst for C–H Activation. RSC Adv., 2017, 7, 24885–24894. doi:10.1039/C7RA03698A.
  • Le, X.; Dong, Z.; Liu, Y.; Jin, Z.; Huy, T. D.; Leb, M; Ma, J. Palladium Nanoparticles Immobilized on Core -Shell Magnetic Fibers as a Highly Efficient and Recyclable Heterogeneous Catalyst for the Reduction of 4-Nitrophenol and Suzuki Coupling Reactions. J. Mater. Chem. A 2014, 2, 19696–19706. doi:10.1039/C4TA04919E.
  • Le, X.; Dong, Z.; Li, X.; Zhang, W.; Le, M.; Ma, J. Fibrous Nano-Silica Supported Palladium Nanoparticles: An Efficient Catalyst for the Reduction of 4-Nitrophenol and Hydrodechlorination of 4-Chlorophenol Under Mild Conditions. Catal. Commun., 2015, 59, 21–25. doi:10.1016/j.catcom.2014.09.029.
  • Sadeghzadeh, S.M.; Zhiani, R.; Emrani, S. KCC-1/GMSI/VB12 as a New Nano Catalyst for the Carbonylative Suzuki -Miyaura Crosscoupling Reaction. RSC Adv., 2017, 7, 32139–32145. doi:10.1039/C7RA06021A.
  • Singh, R.; Bapat, R.; Qin, L.; Feng, H.; Polshettiwar, V. Atomic Layer Deposited (ALD) TiO2 on Fibrous Nano-Silica (KCC-1) for Photocatalysis: Nanoparticle Formation and Size Quantization Effect. ACS Catal 2016, 6, 2770–2784. doi:10.1021/acscatal.6b00418.
  • Sun, Z.; Li, H.; Guo, D.; Sun, J.; Cui, G.; Liu, Y.; Tian, Y.; Yan, S. A Multifunctional Magnetic Core–Shell Fibrous Silica Sensing Probe for Highly Sensitive Detection and Removal of Zn2+ from Aqueous Solution. J. Mater. Chem. C 2015, 3, 4713–4722. doi:10.1039/C5TC00166H.
  • Yu, K.; Zhang, X.; Tong, H.; Yan, X.; Liu, S. Synthesis of Fibrous Monodisperse Core.Shell Fe3O4/SiO2/KCC-1. Mater. Lett. 2013, 106, 151–154. doi:10.1016/j.matlet.2013.04.112.
  • Dong, Z.; Le, X.; Dong, C.; Zhang, W.; Li, X.; Ma, J. Ni@Pd Core–Shell Nanoparticles Modified Fibrous Silica Nanospheres as Highly Efficient and Recoverable Catalyst for Reduction of 4-Nitrophenol and Hydrodechlorination of 4-Chlorophenol. Appl. Catal, B 2015, 162, 372–380. doi:10.1016/j.apcatb.2014.07.009.
  • Dong, Z.; Le, X.; Li, X.; Zhang, W.; Dong, C.; Ma, J. Silver Nanoparticles Immobilized on Fibrous Nano-Silica as Highly Efficient and Recyclable Heterogeneous Catalyst for Reduction of 4-Nitrophenol and 2-Nitroaniline. Appl. Catal, B 2014, 158–159, 129–135. doi:10.1016/j.apcatb.2014.04.015.
  • Le, X.; Dong, Z.; Zhang, W.; Li, X.; Ma, J. Fibrous Nano-Silica Containing Immobilized Ni@Au Core–Shell Nanoparticles: A Highly Active and Reusable Catalyst for the Reduction of 4-Nitrophenol and 2-Nitroaniline. J. Mol. Catal. A: Chem. 2014, 395, 58–65. doi:10.1016/j.molcata.2014.08.002.
  • Sadeghzadeh, S.M.; Zhiani, R.; Khoobi, M.; Emrani, S. Synthesis of 3-Acyloxylindolines Under Mild Conditions Using Tripolyphosphate-Grafted KCC-1-NH2. Microporous Mesoporous Mater 2018, 257, 147–153. doi:10.1016/j.micromeso.2017.08.037.
  • Nale, D.B.; Rana, S.; Parida, K.; Bhanage, B.M. Amine Functionalized MCM-41 as a Green, Efficient, and Heterogeneous Catalyst for the Regioselective Synthesis of 5-Aryl-2-Oxazolidinones, from CO2 and Aziridines. Appl. Catal., A 2014, 469, 340–349. doi:10.1016/j.apcata.2013.10.011.
  • Watile, R.A.; Bhanage, B.M. Chitosan Biohydrogel Beads: A Recyclable, Biodegradable, Heterogeneous Catalyst for the Regioselective Synthesis of 5-Aryl-2-Oxazolidinones from Carbon Dioxide and Aziridines at Mild Conditions. Indian J. Chem. 2012, 51, 1354–1360.
  • Du, Y.; Wu, Y.; Liu, A.H.; He, L.N. Quaternary Ammonium Bromide Functionalized Polyethylene Glycol: A Highly Efficient and Recyclable Catalyst for Selective Synthesis of 5-Aryl-2-oxazolidinones from Carbon Dioxide and Aziridines Under Solvent-Free Conditions. J. Org. Chem. 2008, 73, 4709–4712. doi:10.1021/jo800269v.
  • Wu, Y.; He, L.N.; Du, Y.; Wang, J.Q.; Miao, C.X.; Li, W. Zirconyl Chloride: An Efficient Recyclable Catalyst for Synthesis of 5-Aryl-2-Oxazolidinones from Aziridines and CO2 Under Solvent-Free Conditions. Tetrahedron 2009, 65, 6204–6210. doi:10.1016/j.tet.2009.05.034.
  • Yang, Z.Z.; He, L.N.; Peng, S.Y.; Liu, A.H. Lewis Basic Ionic Liquids-Catalyzed Synthesis of 5-Aryl-2-Oxazolidinones from Aziridines and CO2 Under Solvent-Free Conditions. Green Chem., 2010, 12, 1850–1854. doi:10.1039/c0gc00286k.
  • Song, Q.W.; Yu, B.; Li, X.D.; Ma, R.; Diao, Z.F.; Li, R.G.; Li, W.; He, L.N. Efficient chemical fixation of CO2 promoted by a bifunctional Ag2WO4/Ph3P system. Green Chem 2014, 16, 1633–1638. doi:10.1039/c3gc42406e.
  • Wang, M.Y.; Song, Q.W.; Ma, R.; Xie, J.N.; He, L.N. Efficient Conversion of Carbon Dioxide at Atmospheric Pressure to 2-Oxazolidinones Promoted by Bifunctional Cu(II)-Substituted Polyoxometalate-Based Ionic Liquids. Green Chem., 2016, 18, 282–287. doi:10.1039/C5GC02311D.
  • Sun, J.; Ren, J.; Zhang, S.; Cheng, W. Water as an Efficient Medium for the Synthesis of Cyclic Carbonate. Tetrahedron Lett 2009, 50, 423–426. doi:10.1016/j.tetlet.2008.11.034.
  • Lan, D.-H.; Chen, L.; Au, C.-T.; Yin, S.-F. One-Pot Synthesized Multi-Functional Graphene Oxide as a Water-Tolerant and Efficient Metal-Free Heterogeneous Catalyst for Cycloaddition Reaction. Carbon 2015, 93, 22–31. doi:10.1016/j.carbon.2015.05.023.
  • Xiao, L.; Su, D.; Yue, C.; Wu, W. Protic Ionic Liquids: A Highly Efficient Catalyst for Synthesis of Cyclic Carbonate from Carbon Dioxide and Epoxides. J. CO2Utiliz 2014, 6, 1–6.
  • Mirabaud, A.; Mulatier, J.C.; Martinez, A.; Dutasta, J.P.; Dufaud, V. Investigating Host -Guest Complexes in the Catalytic Synthesis of Cyclic Carbonates from Styrene Oxide and CO2. ACS Catal 2015, 5, 6748–6752. doi:10.1021/acscatal.5b01545.
  • Mizuno, T.; Iwai, T.; Ishino, Y. The Simple Solvent-Free Synthesis of 1H-Quinazoline-2,4-Diones Using Supercritical Carbon Dioxide and Catalytic Amount of Base. Tetrahedron Lett., 2004, 45, 7073–7075. doi:10.1016/j.tetlet.2004.07.152.
  • Patil, Y. P.; Tambade, P. J.; Jagtap, S. R.; Bhanage, B. M. Cesium Carbonate Catalyzed Efficient Synthesis of Quinazoline-2,4(1H,3H)-Diones Using Carbon Dioxide and 2-Aminobenzonitriles. Green Chem. Lett. Rev 2008, 1, 127–132. doi:10.1080/17518250802331181.
  • Patil, Y. P.; Tambade, P. J.; Deshmukh, K. M.; Bhanage, B. M. Synthesis of Quinazoline-2,4(1H,3H)-Diones from Carbon Dioxide and 2-Aminobenzonitriles Using [Bmim]OH as a Homogeneous Recyclable Catalyst. Catal. Today 2009, 148, 355–360. doi:10.1016/j.cattod.2009.06.010.
  • Patil, Y. P.; Tambade, P. J.; Parghi, K. D.; Jayaram, R. V.; Bhanage, B. M. Synthesis of Quinazoline-2,4(1H,3H)-Diones from Carbon Dioxide and 2-Aminobenzonitriles Using MgO/ZrO2 as a Solid Base Catalyst. Catal. Lett. 2009, 133, 201–208. doi:10.1007/s10562-009-0126-5.
  • Gao, J.; He, L. N.; Miao, C. X.; Chanfreau, S. Chemical Fixation of CO2: Efficient Synthesis of Quinazoline-2,4(1H, 3H)-Diones Catalyzed by Guanidines Under Solvent-Free Conditions. Tetrahedron 2010, 66, 4063–4067. doi:10.1016/j.tet.2010.04.011.
  • Jiarong, L.; Xian, C.; Daxin, S.; Shuling, M.; Qing, L.; Qi, Z.; Jianhong, T. A New and Facile Synthesis of Quinazoline-2,4(1H,3H)-Diones. Org. Lett. 2009, 11, 1193–1196. doi:10.1021/ol900093h.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.