142
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis of two aminosilanes as CVD precursors of SiCxNy films: Tuning film composition by Molecular Structures

, , &
Pages 568-573 | Received 09 Sep 2017, Accepted 18 Mar 2018, Published online: 19 Apr 2018

References

  • Riley, F. L. Silicon Nitride and Related Materials. J. Am. Ceram. Soc. 2000, 83, 245–262. DOI:10.1111/j.1151-2916.2000.tb01182.x.
  • Klemm, H. Silicon Nitride for High-Temperature Applications. J. Am. Ceram. Soc. 2010, 93, 1501–1522. DOI:10.1111/j.1551-2916.2010.03839.x.
  • Chen, Y. Q.; Zhang, X. N.; Zhao, Q.; He, L.; Huang, C. K.; Xie, Z. P. P-Type 3C-SiC Nanowires and Their Optical and Electrical Transport Properties. Chem. Commun. 2011, 47, 6398–6400. DOI:10.1039/c1cc10863h.
  • Wright, N. G.; Horsfall, A. B.; Vassilevski, K. Prospects for SiC Electronics and Sensors. Mater. Today. 2008, 11, 16–21. DOI:10.1016/S1369-7021(07)70348-6.
  • Phan, H. P.; Dao, D. V.; Tanner, P.; Han, J. S.; Nguyen, N. T.; Dimitrijev, S.; Walker, G.; Wang, L.; Zhu, Y. Thickness Dependence of the Piezoresistive Effect in p-Type Single Crystalline 3C-SiC Nanothin Films. J. Mater. Chem. C 2014, 2, 7176–7179. DOI:10.1039/C4TC01054J.
  • Flores, O.; Bordia, R. K.; Nestler, D.; Krenkel, W.; Motz, G. Ceramic Fibers Based on SiC and SiCN Systems: Current Research, Development, and Commercial Status. Adv. Eng. Mater. 2014, 16, 621–636. DOI:10.1002/adem.201400069.
  • Badzian, A.; Badzian, T.; Roy, R.; Drawl, W. Silicon Carbonitride, a New Dard Material and Its Relation to the Confusion about ‘Harder than Diamond’ C3N4. Thin Solid Films 1999, 354, 148–153. DOI:10.1016/S0040-6090(99)00535-0.
  • Badzian, A.; Badzian, T.; Drawl, W. D.; Roy, R. Silicon carbonitride: A Rival to Cubic Boron Nitride. Diamond Relat. Mater. 1998, 7, 1519. DOI:10.1016/S0925-9635(98)00228-3.
  • Peng, Y. Q.; Zhou, J. C.; Gong, J. H.; Yu, Q. R. Microstructure and Optical Properties of SiCN Thin Films Deposited by Reactive Magnetron Sputtering. Mater. Lett. 2014, 131, 148. DOI:10.1016/j.matlet.2014.05.152.
  • Parkhomenko, I.; Vlasukova, L.; Komarov, F.; Milchanin, O.; Makhavikou, M.; Mudryi, A.; Zhivulko, V.; Żuk, J.; Kopyciński, P.; Murzalinov, D. Origin of Visible Photoluminescence from Si-rich and N-rich Silicon Nitride Films. Thin Solid Films 2017, 626, 70–75. DOI:10.1016/j.tsf.2017.02.027.
  • Rahman, M. M.; Hasan, S. K. Ellipsometric, XPS and FTIR Study on SiCN Films Deposited by Hot-Wire Chemical Vapor Deposition Method. Mater. Sci. in Semicond. Process 2016, 42, 373. DOI:10.1016/j.mssp.2015.11.006.
  • Demin, V. N.; Smirnova, T. P.; Borisov, V. O.; Grachev, G. N.; Smirnov, A. L.; Khomyakov, M. N. Physical-Chemical Properties of Silicon Carbonitride Films Prepared Using Laser Plasma Deposition from Hexamethyldisilazane. Glass Phys. Chem. 2015, 41, 232–236. DOI:10.1134/S1087659615020042.
  • Torchynska, T.; Vergara Hernandez, E.; Khomenkova, L.; Slaoui, A. Light Emitting Mechanisms in Si-rich SiNx Films with Different Silicon Nitride Stoichiometry. Phys. Status Solidi B, 2017, 1600670. DOI:10.1002/pssb.201600670.
  • Pushkarev, R. V.; Fainer, N. I.; Maurya, K. K. Superlattices Microstruct. Structural and Magnetic Properties of Nanocomposite Ironcontaining SiCxNy Films. 2017, 102, 119–126. DOI:10.1016/j.spmi.2016.12.014.
  • Ting, S.-F.; Fang, Y.-K.; Hsieh, W.-T.; Tsair, Y.-S.; Chang, C.-N.; Lin, C.-S.; Hsieh, M.-C.; Chiang, H.-C.; Ho, J.-J. High Breakdown-Voltage SiCN/Si Heterojunction Diode for High-Temperature Applications. IEEE Electron Device Lett. 2002, 23, 142–144. DOI:10.1109/55.988818.
  • Park, N.-M.; K, Sang H.; Sung, G. Y. Band Gap Engineering of SiCN Film Grown by Pulsed Laser Deposition. J. Appl. Phys. 2003, 94, 2725. DOI:10.1063/1.1594267.
  • Ferreira, I.; Fortunato, E.; Vilarinho, P.; Viana, A. S.; Ramos, A. R.; Alves, E.; Martins, R. Hydrogenated Silicon Carbon Nitride Films Obtained by HWCVD, PA-HWCVD and PECVD Techniques. J. Non-Cryst. Solids. 2006, 352, 1361–1366. DOI:10.1016/j.jnoncrysol.2006.02.025.
  • Yamamoto, K.; Koga, Y.; Fujiwara, S. XPS Studies of Amorphous SiCN Thin Films Prepared by Nitrogen Ion-Assisted Pulsed-Laser Deposition of SiC Target. Diamond Relat. Mater. 2001, 10, 1921–1926. DOI:10.1016/S0925-9635(01)00422-8.
  • Cova, P.; Masut, R. A.; Grenier, O.; Poulin, S. Effect of Unintentionally Introduced Oxygen on the Electron–Cyclotron Resonance Chemical-Vapor Deposition of SiN X Films. J. Appl. Phys. 2002, 92, 129–138. DOI:10.1063/1.1483902.
  • Bulou, S.; Le Brizoual, L.; Miska, P.; de Poucques, L.; Hugon, R.; Belmahi, M.; Bougdira, J. Structural and Optical Properties of a-SiCN Thin Film Synthesised in a Microwave Plasma at Constant Temperature and Different Flow of CH4 Added to HMDSN/N2/Ar Mixture. Surf. Coat. Technol. 2011, 205, 214–217. DOI:10.1016/j.surfcoat.2011.02.014.
  • Li, Q.; Wang, Y. N.; Shan, X. T.; Wang, X. W.; Zhao, W. Preparation and Optical Properties of SiCN Thin Films Deposited by Reactive Magnetron Sputtering. J. Mater. Sci. Mater. Electron. 2017, 28, 6769. DOI:10.1007/s10854-017-6373-0.
  • Peng, Y. Q.; Zhou, J. C.; Gong, J. H.; Yu, Q. R. Microstructure and Optical Properties of SiCN Thin Films Deposited by Reactive Magnetron Sputtering. Mater. Lett. 2014, 131, 148. DOI:10.1016/j.matlet.2014.05.152.
  • Batocki, R. G. S.; Mota, R. P.; Honda, R. Y.; Santos, D. C. R. Amorphous Silicon Carbonitride Films Modified by Plasma Immersion Ion Implantation. Vacuum 2014, 107, 174. DOI:10.1016/j.vacuum.2014.01.001.
  • Golecki, I.; Reidingger, F.; Marti. Singlecrystalline, Epitaxial Cubic SiC Films Grown on (100) Si at 750°C by Chemical Vapor Deposition. J. Appl. Phys. Lett. 1992, 60, 1703. DOI:10.1063/1.107191.
  • Wrobel, A. M.; Walkiewicz-Pietrzykowska, A.; Ahola, M.; Vayrynen, I. J.; Ferrer-Fernandez F. J.; Gonzalez-Elip, A. R. Growth Mechanism and Chemical Structure of Amorphous Hydrogenated Silicon Carbide (a-SiC:H) Films Formed by Remote Hydrogen Microwave Plasma CVD from a Triethylsilane Precursor: Part 1. Chem. Vap. Deposition 2009, 15, 39. DOI:10.1002/cvde.200806726.
  • Wrobel, A. M.; Walkiewicz-Pietrzykowska, A.; Stasiak, M.; Aoki, T.; Hatanaka, Y.; Szumilewicz, J. Reactivily of Alkylsilanes and Alkylcarbosilanes in Atomic Hydrogen-Induced Chemical Vapor Deposition. J. Electrochem. Soc. 1998, 145, 1060. DOI:10.1149/1.1838389.
  • Wrobel, A. M.; Walkiewicz-Pietrzykowska, A. Mechanism of the Initiation Step in Atomic Hydrogen-Induced CVD of Amorphous Hydrogenated Silicon-Carbon Films from Single-Source Precursors. Chem. Vap. Deposition 1998, 4, 133. DOI:10.1002/(SICI)1521-3862(199807)04:04<133::AID-CVDE133>3.3.CO;2-U.
  • Fainer, N.; Golubenko, A.; Rumyantsev, Y. M.; Maximovskii, E. Use of Hexamethylcyclotrisilazane for Preparation of Transparent Films of Complex Compositions. Glass Phys. Chem. 2009, 35, 274. DOI:10.1134/S1087659609030067.
  • Wrobel, A. M.; Blaszczyk-Lezak, I.; Uznanski, P.; Glebocki, B. Silicon Carbonitride (SiCN) Films by Remote Hydrogen Microwave Plasma CVD from Tris (dimethylamino) silane as Novel Single-Source Precursor. Chem. Vap. Deposition 2010, 16, 211. DOI:10.1002/cvde.201004287.
  • Mundo, R. D.; Ricci, M.; d'Agostino, R.; Fracassi, F.; Palumbo, F. PECVD of Low Carbon Content Silicon Nitride-Like Thin Films with Dimethylaminosilanes. Plasma Process. Polym. 2007, 4, 21. DOI:10.1002/ppap.200730203.
  • Suchaneck, G.; Norkus, V.; Gerlach, G. Low-Temperature PECVD-Deposited Silicon Nitride Thin Films for Sensor Applications. Surf. Coat. Technol. 2001, 142, 808. DOI:10.1016/S0257-8972(01)01106-9.
  • Wrobel, A. M.; Blaszczyk-Lezak, I. Remote Hydrogen Microwave Plasma CVD of Silicon Carbonitride Films from a Tetramethyldisilazane Source. Part 1: Characterization of the Process and Structure of the Films. Chem. Vap. Deposition 2007, 13, 595. DOI:10.1002/cvde.200706586.
  • Du, L. Y.; Chu, W. X.; Miao, H. Y.; Xu, C. Y.; Ding, Y. Q. Synthesis, Characterization, Thermal Properties of Silicon(IV) Compounds Containing Guanidinato Ligands and Their Potential as CVD Precursors. RSC Adv. 2015, 5, 71637. DOI:10.1039/C5RA09755J.
  • Du, L. Y.; Chu, W. X.; Xu, C. Y.; Miao, H. Y.; Ding, Y. Q. Synthesis, Characterization of Silicon(IV) Compounds Containing 2-Alkyl-Aminopyridine Ligands and Evaluation of Them as CVD Precursors. RSC Adv. 2015, 5, 59991. DOI:10.1039/C5RA07045G.
  • Du, L. Y.; Chu, W. X.; Miao, H. Y.; Wang, D. W.; Xu, C. Y.; Ding, Y. Q. Synthesis, Characterization, and Thermal Properties of Chlorine-Containing 1,1,2,2-Tetraaminodisilanes and Their Potential as Chemical Vapor Deposition Precursors for Silicon Nitride Films. Eur. J. Inorg. Chem. 2015, 3205. DOI:10.1002/ejic.201500493.
  • Du, L. Y.; Chu, W. X.; Xu, C. Y.; Miao, H. Y.; Wang, D. W.; Xu, C. Y.; Ding, Y. Q. Synthesis, Characterization, Thermal Property of Si(c-C5H9NH)4 and Its Potential as CVD Precursor for SiC Film. Z. Anorg. Allg. Chem. 2015, 641, 1813. DOI:10.1002/zaac.201500143.
  • Du, L. Y.; Xu, C. Y.; Chu, W. X.; Ding, Y. Q. A Famliy of 1,1,1,2,2,2-Hexa(-primary-)amino-Disilanes as Potential CVD Precursors: Tuning Thermal Properties by Small Variation of the Substituent. Polyhedron. 2016, 117, 729. DOI:10.1016/j.poly.2016.07.012.
  • Rahman, Md. M.; Hasan, S. K. Ellipsometric, XPS and FTIR Study on SiCN Films deposited by hot-wire Chemical Vapor Deposition Method. Mater. Sci. in Semicond. Process 2016, 42, 373. DOI:10.1016/j.mssp.2015.11.006.
  • Bulou, S.; Le Brizoual, L.; Miska, P.; de Poucques, L.; Bougdira, J.; Belmahi, M. Wide Variations of SiCxNy:H Thin Films Optical Constants Deposited by H2/N2/Ar/Hexamethyldisilazane Microwave Plasma. Surf. and Coat. Technol. 2012, 208, 46. DOI:10.1016/j.surfcoat.2012.07.079.
  • Utsumi, T.; Oka, Y.; Suzuki, T.; Jiang, W. H.; Yatsuzuka, M. Properties of SiCx Film Prepared with Plasma-Based Ion Implantation and Deposition. Trans. Mater. Res. Soc. Jpn. 2007, 32, 879.
  • Hatanaka, Y.; Kitamura, K.; Wickramanayaka, S.; Nakanishi, Y.; Tyczkowski, J. Remote Plasma Depositions of SiCxNy Film Using Hexamethyldisilazane. Inst. Phys. Conf. Ser. 1996, 142, 1055.
  • Richardson, M. F.; Sievers, R. E. Volatile Rare Earth Chelates of 1,1,1,5,5,5-Hexafluoro-2,4-Pentanedione and 1,1,1,2,2,3,3,7,7,7-Decafluoro-4,6-Heptanedione. Inorg. Chem. 1971, 10, 498. DOI:10.1021/ic50097a012.
  • Li, Z.; Rahtu, A.; Gordon, R. G. Atomic Layer Deposition of Ultrathin Copper Metal Films from a Liquid Copper(I) Amidinate Precursor. J. Electrochem. Soc. 2006, 153, C787. DOI:10.1149/1.2338632.
  • Ermakova, E. N.; Sysoev, S. V.; Nikulina, L. D.; Tsyrendorzhieva, I. P.; Rakhlin, V. I.; Kosinova, M. L. Synthesis and Characterization of Organosilicon Compounds as Novel Precursors for CVD Processes. Thermochim. Acta. 2015, 622, 2. DOI:10.1016/j.tca.2015.02.004.
  • Wright, S. F.; Dollimore, D.; Dunn, J. G.; Alexander, K. Determination of the Vapor Pressure Curves of Adipic Acid and Triethanolamine Using Thermogravimetric Analysis. Thermochim. Acta. 2004, 421, 25. DOI:10.1016/j.tca.2004.02.021.
  • Kafizas, A.; Carmalt, C. J.; Parkin, I. P. CVD and Precursor Chemistry of Transition Metal Nitrides. Coordin. Chem. Rev. 2013, 257, 2073. DOI:10.1016/j.ccr.2012.12.004.
  • McElwee-White, L. Design of Precursors for the CVD of Inorganic Thin Films. Dalton Trans. 2006, 45, 5327. DOI:10.1039/b611848h.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.