257
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis and structural characterization of geminal and non-geminal 1,1,3,3-tetramethylguanidine substituted derivatives of cyclotriphosphazene: Thermal and spectroscopic investigations of the products

&
Pages 620-629 | Received 22 Nov 2017, Accepted 06 May 2018, Published online: 28 Sep 2018

References

  • Castera, P.; Faucher, J.-P.; Granier, M.; Labarre, J.-F. Singly, Doubly and Triply Bridged Polyazaheterophanes Derived from Hexachlorocyclotriphosphazene, N 3 P 3 Cl 6. Phosphorus Sulfur Silicon Relat. Elem. 1987, 32, 37–42.
  • Alkubaisi, A. H.; Parkes, H. G.; Shaw, R. A. Phosphorus-Nitrogen Componds. Part 58. The Reactions of Hexachlorocyclotriphosphazatriene with Ethane-, 1,3-Propane- and 1,4-Butane-Diols. Spiro, Ansa, Bridged and Dangling Derivatives and Their 31P and 1H Nuclear Magnetic Resonance Spectra. Heterocycles 1989, 28, 347–358.
  • Al-Madfa, H. A.; Shaw, R. A.; Ture, S. Phosphorus-Nitrogen Compounds. PART 64. 1 the Reactions of Hexachlorocyclotriphosphazatriene with 2,2-Dimethylpropane-1, 3-Diol. Nuclear Magnetic Resonance Studies of the Products. Phosphorus Sulfur Silicon Relat. Elem. 1990, 53, 333–338.
  • Muralidhara, M. G.; Grover, N.; Chandrasekhar, V. Reactions of 1,3-Butanediol with Hexachlorocyclotriphosphazene: unusual Non-Equivalence of Phosphorus Nuclei in the Spirocyclic Product N3P3Cl4[OCH(CH3)CH2CH2O]. Polyhedron 1993, 12, 1509–1513.
  • Allcock, H. R.; Turner, M. L.; Visscher, K. B. Synthesis of Transannular- and Spiro-Substituted Cyclotriphosphazenes: x-Ray Crystal Structures of 1,1-[N3P3(OCH2CF3)4{O2C12H8}], 1,3-[N3P3(OCH2CF3)4{O2C12H8}], 1,1-[N3P3(OCH2CF3)4{O2C10H6}], and 1,3-[N3P3(OCH2CF3)4}O2C10H6}]. Inorg. Chem. 1992, 31, 4354–4364.
  • Allcock, H. R.; Diefenbach, U.; Pucher, S. R. New Mono- and Trispirocyclotriphosphazenes from the Reactions of (NPCl2)3 with Aromatic Ortho Dinucleophiles. Inorg. Chem. 1994, 33, 3091–3095.
  • Brandt, K.; Kupka, T.; Drodz, J.; van de Grampel, J. C.; Meetsma, A.; Jekel, A. P. New Dioxytetraethyleneoxy Macrocyclic Cyclophosphazene Derivatives. Inorg. Chim. Acta 1995, 228, 187–192.
  • Brandt, K.; Porwolik-Czomperlik, I.; Siwy, T.; Kupka, M.; Shaw, R. A.; Davies, D. B.; Hursthouse, M. B.; Sykara, G. Thermodynamic Vs Supramolecular Effects in the Regiocontrol of the Formation of New Cyclotriphosphazene-Containing Chiral Ligands with 1,1‘-Binaphthyl Units: Spiro Vs Ansa Substitution at the N 3 P 3 Ring. J. Am. Chem. Soc. 1997, 119, 12432–12440.
  • Brandt, K.; Porwolik-Czomperlik, I.; Siwy, M.; Kupka, T.; Shaw, R. A.; Ture, S.; Clayton, A.; Davies, D. B.; Hursthouse, M. B.; Sykara, G. D. A Regioselective Route to New Polytopic Receptors by Diaminolysis of Chlorocyclotriphosphazatriene-Containing Crown Ethers. J. Org. Chem. 1999, 64, 7299–7304.
  • Davies, D. B.; Clayton, A. T.; Eaton, E. R.; Shaw, R. A.; Egan, A.; Hursthouse, M. B.; Sykara, D. G.; Czomperlik, I. P.; Siwy, M.; Brandt, K. Chiral Configurations of Cyclophosphazenes. J. Am. Chem. Soc. 2000, 122, 12447–12457.
  • Muralidharan, K.; Venugopalan, P.; Elias, A. Ansa versus Spiro Substitution of Cyclophosphazenes: is Fluorination Essential for Ansa to Spiro Transformation of Cyclophosphazenes? Inorg. Chem. 2003, 42, 3176–3182.
  • Beşli, S.; Coles, S. J.; Davies, D. B.; Eaton, R. J.; Hursthouse, M. B.; Kılıç, A.; Shaw, R. A. Competitive Formation of Spiro and Ansa Derivatives in the Reactions of Tetrafluorobutane-1,4-Diol with Hexachlorocyclotriphosphazene: A Comparison with Butane-1,4-Diol. Polyhedron. 2006, 25, 963–974.
  • Beşli, S.; Coles, S. J.; Davarcı, D.; Davies, D. B.; Hursthouse, M. B.; Kılıç, A. Formation of Spiro and Ansa Derivatives in the Reaction of 2,2,3,3,4,4-Hexafluoropentane-1,5-Diol with Cyclotriphosphazene: Comparison with 2,2,3,3-Tetrafluorobutane-1,4-Diol. Polyhedron. 2007, 26, 5283–5292.
  • Beşli, S.; Coles, S. J.; Davies, D. B.; Erkovan, A. O.; Hursthouse, M. B.; Kılıç, A. Single-, Double- and Triple-Bridged Derivatives of Cyclotriphosphazenes with an Octafluorohexane-1,6-Diol. Polyhedron. 2009, 28, 3593–3599.
  • Shaw, R. A. The Reactions of Phosphazenes with Difunctional and Polyfunctional Nucleophilic Reagents. Phosphorus Sulfur Silicon Relat. Elem. 1989, 45, 103–136.
  • Guerch, G.; Jean-François, L.; Lahana, R.; Roques, R.; Sournies, F. An Answer to the Spiro versus Ansa Dilemma in Cyclophosphazenes. Mol. Struct. 1983, 99, 275–282.
  • Castera, P.; Faucher, J. P.; Guerch, G.; Lahana, R.; Mahmoun, A.; Sournies, F.; Labarre, J. F. An Answer to the SPIRO versus ANSA Dillemma in Cyclophosphazenes. Neither SPIRO nor ANSA: the BINOdicyclotriphosphazenes, N3P3Cl5-[HN-(CH2)n-NH]Cl5P3N3. Inorg. Chem. Acta 1985, 108, 29–33.
  • Beşli, S.; Coles, S. J.; Davarcı, D.; Davies, D. B.; Yuksel, F. Effect of Chain Length on the Formation of Intramolecular and Intermolecular Products: Reaction of Diols with Cyclotriphosphazene. Polyhedron. 2011, 30, 329–339.
  • Chandrasekhar, V.; Krishnan, V. Advances in the Chemistry of Chlorocyclophosphazenes. Adv. Inorg. Chem. 2002, 53, 159–211.
  • Beşli, S.; Coles, S. J.; Davies, D. B.; Kılıç, A.; Shaw, R. A. Bridged Cyclophosphazenes Resulting from Deprotonation Reactions of Cyclotriphophazenes Bearing a P–NH Group. Dalton Trans. 2011, 40, 5307–5315.
  • Davarcı, D.; Beşli, S.; Yüksel, F. Reactions of Cyclotriphosphazene with 1,6-Diaminohexane and 1,8-Diaminooctane: Mono-Ansa, Double- and Triple-Bridged Derivatives. Polyhedron 2014, 68, 10–16.
  • Ture, S. Phosphorus-Nitrogen Compounds: Reinvestigation of the Reactions of Hexachlorocyclotriphosphazene with 1,4-Butane- and 1,6-Hexane-Diols—NMR Studies of the Products. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 1174–1182.
  • Allen, C. W. Regio- and Stereochemical Control in Substitution Reactions of Cyclophosphazenes. Chem. Rev. 1991, 91, 119–135.
  • Wang, L.; Ye, Y.; Lykourinou, V.; Yang, J.; Angerhofer, A.; Zhao, Y.; Ming, L.-J. Catalytic Cooperativity, Nuclearity, and O 2 /H 2 O 2 Specificity of Multi-Copper(II) Complexes of Cyclen-Tethered Cyclotriphosphazene Ligands in Aqueous Media. Eur. J. Inorg. Chem. 2017, 2017, 4899–4908.
  • Koran, K.; Tekin, Ç.; Çalışkan, E.; Tekin, S.; Sandal, S.; Görgülü, A. O. Synthesis, Structural and Thermal Characterizations and in Vitro Cytotoxic Activities of New Cyclotriphosphazene Derivatives. Phosphorus Sulfur Silicon Relat. Elem. 2017, 192, 1002–1011.
  • Şenkuytu, E.; Cebesoy, Z.; Çiftçi, G. Y.; Eçik, T. Study on the Synthesis, Photophysical Properties and Singlet Oxygen Generation Behavior of Bodipy-Functionalized Cyclotriphosphazenes. J. Fluoresc. 2017, 27, 595–601.
  • Li, G.; Ma, S.; Yang, X.; Chen, K.; Ye, Y.; Zhao, Y. Synthesis and Characterization of (S)-BINOL-Modified Cyclotriphosphazene Tetradentate Ligands. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 1421–1424.
  • Ding, P.-G.; Zou, R.; Yang, X.; Zhang, D.; Zhao, Y.; Ye, Y. Synthesis, Characterization, and Oxidative Cleavage Activities of Binaphthol-Modified Cyclotriphosphazene Bidentate Ligands. Phosphorus Sulfur Silicon Relat. Elem. 2015, 190, 240–250.
  • Wang, J.-H.; Wang, C.-C.; Zhang, D.; Liu, C.-J.; Ye, Y.; Zhao, Y. Synthesis, Characterization, and Activity of Cyclotriphosphazene-Cyclene Conjugates. Phosphorus, Sulfur, Silicon Relat. Elem. 2013, 188, 54–58.
  • Lensink, C. B. Organophosphazenes. The synthesis of trimethylsilylacetylene and terminal acetylene derivatives of hexafluorocyclotriphosphazene. J. Chem. Soc. Dalton Trans. 1984, 10, 2843–2845.
  • Shaw, R. A.; Feakins, D.; Last, W. A. Phosphorus-Nitrogen Compounds. The reactions Geminal tetrachloro-1,3-propandioxycyclotriphosphazatriene with Primary and Secondary Amines. Chem. & Ind. 1992, 25, 1254–1258.
  • Allen, C. W.; MacKay, J. A. Reactions of 2-Substituted Ethylamines with Hexachlorocyclotriphosphazene. Inorg. Chem. 1986, 25, 4628–4632.
  • Yıldırım, T.; Bilgin, K.; Çiftci, G. Y.; Eçik, E. T.; Şenkuytu, E.; Uludağ, Y.; Tomak, L.; Kılıç, A. Synthesis, Cytotoxicity and Apoptosis of Cyclotriphosphazene Compounds as Anti-Cancer Agents. Eur. J. Med. Chem. 2012, 52, 213–220.
  • Baek, H.; Cho, Y.; Lee, C. O.; Sohn, Y. S. Synthesis and Antitumor Activity of Cyclotriphosphazene-(Diamine)Platinum(II) Conjugates. Anticancer. Drugs. 2000, 11, 715–725.
  • Sournies, F.; Labarre, J.-F.; Spreafico, F.; Filippeschi, S.; Quan Jin, X. Attempts at the Production of More Selective Antitumourals. J. Mol. Struct. 1986, 147, 161–173.
  • Wolf, H. K.; Raad, M.; Snel, C.; Steenbergen, M. J.; Fens, M. H. A. M.; Storm, G.; Hennink, W. E. Biodegradable Poly(2-Dimethylamino Ethylamino)Phosphazene for in Vivo Gene Delivery to Tumor Cells. Effect of Polymer Molecular Weight. Pharm. Res. 2007, 24, 1572–1580.
  • Sournies, F.; Guerch, G.; Labarre, J.-F.; Jaud, J. On the Antitumor Effectiveness of Aziridinocyclophosphazenes: crystal and Molecular Structure of the Non-Active 2,2-Bis (1-Aziridinyl)-4,4,6,6-Tetrachlorocyclotriphosphazene, Gem-N3P3Az2Cl4. J. Mol. Struct. 1990, 238, 383–390.
  • Yildiz, M.; Yilmaz, S.; Dolger, B. Synthesis, Spectral Properties, and Antimicrobial Activity of 2-Arilamino-2,4,4,6,6-Pentachloro-1,3,5,2λ5,4λ5,6λ5-Triazatriphosphines and Poly[Bis(4-Fluorophenylamino)Phosphazene]. Russ. J. Gen. Chem. 2007, 77, 2117–2122.
  • Barbera, J.; Bardaji, M.; Jimenez, J.; Laguna, A.; Martinez, M. P.; Oriol, L.; Serrano, J. L.; Zaragozano, I. Columnar Mesomorphic Organizations in Cyclotriphosphazenes. J. Am. Chem. Soc. 2005, 127, 8994–9002.
  • Ilter, E. E.; Asmafiliz, N.; Kılıç, Z.; Açık, L.; Yavuz, M.; Bali, E. B.; Solak, A. O.; Büyükkaya, F.; Dal, H.; Hökelek, T. Phosphorus–Nitrogen Compounds: Part 19. Syntheses, Structural and Electrochemical Investigations, Biological Activities, and DNA Interactions of New Spirocyclic Monoferrocenylcyclotriphosphazenes. Polyhedron. 2010, 29, 2933–2944.
  • Görgülü, A. O.; Koran, K.; Özen, F.; Tekin, S.; Sandal, S. Synthesis, Structural Characterization and anti-Carcinogenic Activity of New Cyclotriphosphazenes Containing Dioxybiphenyl and Chalcone Groups. J. Mol. Struct. 2015, 1087, 1–10.
  • J. A. P.; Daniel Plano, C. S. Applications of Calorimetry in a Wide Context - Differential Scanning Calorimetry, Isothermal Titration Calorimetry and Microcalorimetry (Edited by Amal Ali Elkordy); InTech, Open Access: Rijeka, Croatia. 2013; pp. 365–384.
  • Particle Analytical, “Differential Scanning Calorimetry (DSC) theory.” http://particle.dk/methods-analytical-laboratory/dsc-differential-scanning-calorimetry-2/dsc-theory (accessed Jul 24, 2018).
  • Höhne, W. H. G.; Hemminger, W. H.; Flammersheim, H. J. Differential Scanning Calorimetry; Springer-VCH: Berlin; 2004, 298.
  • Cassel, R. B.; Behme, R. A DSC Method to Determine the Relative Stability of Pharmaceutical Polymorphs. Am. Lab. 2004, 36, 0–2.
  • Knothe, G.; Dunn, R. O. A Comprehensive Evaluation of the Melting Points of Fatty Acids and Esters Determined by Differential Scanning Calorimetry. J. Am. Oil Chem. Soc. 2009, 86, 843–856.
  • Plato, C.; Glasgow, A. R. Differential Scanning Calorimetry as a General Method for Determining the Purity and Heat of Fusion of High-Purity Organic Chemicals. Application to 95 Compounds. Anal. Chem. 1969, 41, 330–336.
  • Gurbanov, R.; Yıldız, F. Molecular Profile of Oral Probiotic Bacteria to Be Used with Functional Foods. J. Food Health Sci. 2017, 3, 117–131.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.