226
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis of β-chloro-α-aminophosphonate derivatives via the regioselective ring opening of unactivated aziridine-2-phosphonates

, &
Pages 858-864 | Received 20 Jun 2018, Accepted 28 Jul 2018, Published online: 08 Oct 2018

References

  • Singh, G. S.; D'hooghe, M.; De Kimpe, N. Synthesis and Reactivity of C-Heteroatom-Substituted Aziridines. Chem. Rev. 2007, 107, 2080–2135. DOI: 10.1021/cr0680033
  • Stanković, S.; D'hooghe, M.; Catak, S.; Eum, H.; Waroquier, M.; Van Speybroeck, V.; De Kimpe, N.; Ha, H.-J. Regioselectivity in the Ring Opening of Non-Activated Aziridines. Chem. Soc. Rev. 2012, 41, 643–665. DOI: 10.1039/C1CS15140A.
  • Watson, I. D. G.; Yu, L.; Yudın, A. K. Advances in Nitrogen Transfer Reactions Involving Aziridines. Acc. Chem. Res. 2006, 39, 194–206. DOI: 10.1021/ar050038m.
  • Degennaro, L.; Trinchera, P.; Luisi, R. Recent Advances in the Stereoselective Synthesis of Aziridines. Chem. Rev. 2014, 114, 7881–7929. DOI: 10.1021/cr400553c.
  • Callebaut, G.; Meiresonne, T.; De Kimpe, N.; Mangelinckx, S. Synthesis and Reactivity of 2-(Carboxymethyl)Aziridine Derivatives. Chem. Rev. 2014, 114, 7954–8015. DOI: 10.1021/cr400582d.
  • Vega-Perez, J. M.; Palo-Nieto, C.; Vega-Holm, M.; Gongora-Vargas, P.; Calderon-Montano, J. M.; Burgos-Moron, E.; Lopez-Lazaro, M.; Iglesias-Guerra, F. Aziridines from Alkenyl-β-D-Galactopyranoside Derivatives: Stereoselective Synthesis and in Vitro Selective Anticancer Activity. Eur. J. Med. Chem. 2013, 70, 380–392. DOI: 10.1016/j.ejmech.2013.10.020.
  • Regueiro-Ren, A.; Borzilleri, R. M.; Zheng, X.; Kim, S.-H.; Johnson, J. A.; Fairchild, C. R.; Lee, F. Y. F.; Long, B. H.; Vite, G. D. Synthesis and Biological Activity of Novel Epothilone Aziridines. Org. Lett. 2001, 3, 2693–2696. DOI: 10.1021/ol016273w.
  • Paz, M. M.; Tomasz, M. Reductive Activation of Mitomycin a by Thiols. Org. Lett. 2001, 3, 2789–2792. 10.1021/ol015517+.
  • Fukuyama, T.; Xu, L.; Goto, S. Total Synthesis of (±)-FR-900482. J. Am. Chem. Soc. 1992, 114, 383–385. DOI: 10.1021/ja00027a071.
  • Ismail, F. M. D.; Levitsky, D. O.; Dembitsky, V. M. Aziridine Alkaloids as Potential Therapeutic Agents. Eur. J. Med. Chem. 2009, 44, 3373–3387. DOI: 10.1016/j.ejmech.2009.05.013.
  • Giovine, A.; Muraglia, M.; Florio, A. M.; Rosato, A.; Corbo, F.; Franchini, C.; Musio, B.; Degennaro, L.; Luisi, R. Synthesis of Functionalized Arylaziridines as Potential Antimicrobial Agents. Molecules. 2014, 19, 11505–11519. DOI: 10.3390/molecules190811505.
  • Tyler, A. R.; Mosaei, H.; Morton, S.; Waddell, P. G.; Wills, C.; McFarlane, W.; Gray, J.; Goodfellow, M.; Errington, J.; Allenby, N.; et al. Structural Reassignment and Absolute Stereochemistry of Madurastatin C1 (MBJ-0034) and the Related Aziridine Siderophores: Madurastatins A1, B1, and MBJ-0035. J. Nat. Prod. 2017, 80, 1558–1562. DOI: 10.1021/acs.jnatprod.7b00082.
  • Singh, G. S.; Sudheesh, S.; Keroletswe, N. Recent Applications of Aziridine Ring Expansion Reactions in Heterocyclic Synthesis. Arkivoc. 2017, 2018, 50–113. DOI: 10.24820/ark.5550190.p010.288.
  • Nesterov, V. V.; Kolodiazhnyi, O. I. Efficient Method for the Asymmetric Reduction of α- and β-Ketophosphonates. Tetrahedron. 2007, 63, 6720–6731. DOI: 10.1016/j.tet.2007.04.101.
  • Gryshkun, E. V.; Nesterov, V.; Kolodyazhnyi, O. I. Enantioselective Reduction of Ketophosphonates Using Adducts of Chiral Natural Acids with Sodium Borohydride. Arkivoc 2012, 2012, 100–117. DOI: 10.3998/ark.5550190.0013.409.
  • Davis, F. A.; Ramachandar, T.; Wu, Y. Improved Asymmetric Synthesis of Aziridine-2-Phosphonates Using (S)-(+)-2,4,6-Trimethylphenylsulfinamide. J. Org. Chem. 2003, 68, 6894–6898. DOI: 10.1021/jo030142m.
  • Davis, F. A.; Wu, Y.; Yan, H.; McCoull, W.; Prasad, K. R. Asymmetric Synthesis of Aziridine-2-Phosphonates from Enantiopure Sulfinimines (N-Sulfinyl Imines). Synthesis of α-Amino Phosphonates. J. Org. Chem. 2003, 68, 2410–2419. DOI: 10.1021/jo020707z.
  • Pellissier, H. Recent Developments in Asymmetric Aziridination. Tetrahedron. 2010, 66, 1509–1555. DOI: 10.1016/j.tet.2009.11.089.
  • Taylor, A. M.; Schreiber, S. L. Aziridines as Intermediates in Diversity-Oriented Syntheses of Alkaloids. Tetrahedron Lett. 2009, 50, 3230–3233. DOI: 10.1016/j.tetlet.2009.02.034.
  • Kim, J. H.; Lee, S. B.; Lee, W. K.; Yoon, D.-H.; Ha, H.-J. Synthesis of 1,2,5- and 1,2,3,5-Substituted Pyrroles from Substituted Aziridines via Ag(I)-Catalyzed Intramolecular Cyclization. Tetrahedron. 2011, 67, 3553–3558. DOI: 10.1016/j.tet.2011.02.072.
  • Pathipati, S. R.; Singh, V.; Eriksson, L.; Selander, N. Lewis Acid Catalyzed Annulation of Nitrones with Oxiranes, Aziridines, and Thiiranes. Org. Lett. 2015, 17, 4506–4509. DOI: 10.1021/acs.orglett.5b02195.
  • Ali, T. E. Synthetic Methods of Cyclic α-Aminophosphonic Acids and Their Esters. Arkivoc. 2013, 2014, 21–91. DOI: 10.3998/ark.5550190.p008.189.
  • Okoromoba, O. E.; Li, Z.; Robertson, N.; Mashuta, M. S.; Couto, U. R.; Tormena, C. F.; Xu, B.; Hammond, G. B. Achieving Regio- and Stereo-Control in the Fluorination of Aziridines under Acidic Conditions. Chem. Commun. 2016, 52, 13353–13356. DOI: 10.1039/C6CC07855A.
  • Hu, X. E. Nucleophilic Ring Opening of Aziridines. Tetrahedron. 2004, 60, 2701–2763. DOI: 10.1016/j.tet.2004.01.042.
  • Lee, W. K.; Ha, H.-J. Highlights of the Chemistry of Enantiomerically Pure Aziridine 2-Carboxylates. Aldrichim. Acta. 2003, 36, 57–63. DOI: 10.1002/chin.200428252.
  • Gnecco, D.; Orea, F. L.; Galindo, A.; Enríquez, R. G.; Toscano, R. A.; Reynolds, W. F. Regiospecific and Enantiospecific Ring Opening of Methyl (+)-(1'R, 2R)- and (-)-(1'R, 2S)-1-(2-Phenylethanol) Aziridine-2-Carboxylates. Molecules. 2000, 5, 998–1003. DOI: 10.3390/50800998.
  • Kim, Y.; Ha, H. J.; Han, K.; Ko, S. W.; Yun, H.; Yoon, H. J.; Kim, S. M.; Lee, W. K. Preparation of 2,3-Diaminopropionate from Ring Opening of Aziridine-2-Carboxylate. Tetrahedron Lett. 2005, 46, 4407–4409. DOI: 10.1016/j.tetlet.2005.04.039.
  • Dyer, F. B.; Park, C.-M.; Ryan Joseph, R.; Garner, P. Aziridine-Mediated Ligation and Site-Specific Modification of Unprotected Peptides. J. Am. Chem. Soc. 2011, 133, 20033–20035. DOI: 10.1021/ja207133t.
  • Davis, F. A.; McCoull, W.; Titus, D. D. Asymmetric Synthesis of α-Methylphosphophenylalanine Derivatives Using Sulfinimine-Derived Enantiopure Aziridine-2-Phosphonates. Org. Lett. 1999, 1, 1053–1055. DOI: 10.1021/ol990855k.
  • Davis, F. A.; McCoull, W. Asymmetric Synthesis of Aziridine 2-Phosphonates and Azirinyl Phosphonates from Enantiopure Sulfinimines. Tetrahedron Lett. 1999, 40, 249–252. DOI: 10.1016/S0040-4039(98)02331-4.
  • Vanderhoydonck, B.; Stevens, C. V. Ring Transformations of Aziridinyl 2-Phosphonates: Synthesis of 5-Phosphono-2-Oxazolidinones and 5-Phosphono-2-Imidazolidinones. Tetrahedron. 2007, 63, 7679–7689. DOI: 10.1016/j.tet.2007.05.023.
  • Kim, D. Y.; Rhie, D. Y. Synthesis of α-Aminoalkylphosphonates from Vinylphosphonates via Aziridinylphosphonates. Tetrahedron. 1997, 53, 13603–13608. 10.1016/S0040-4020(97)00880-6.
  • Palacios, F.; Aparicio, D.; de Retana, A. M. O.; de los Santos, J. M.; Gil, J. I.; de Munain, L. Asymmetric Synthesis of 2H-Aziridine Phosphonates, and α- or β-Aminophosphonates from Enantiomerically Enriched 2H-Azirines. Tetrahedron: Asymmetry. 2003, 14, 689–700. DOI: 10.1016/S0957-4166(03)00089-2.
  • Dolence, E. K.; Roylance, J. B. Optically Active Diethyl N-(p-Toluenesulfonyl)-Aziridine 2-Phosphonates as Chiral Synthons for the Synthesis of β-Substituted α-Amino Phosphonates. Tetrahedron: Asymmetry. 2004, 15, 3307–3322. DOI: 10.1016/j.tetasy.2004.08.034.
  • Palacios, F.; Ochoa de Retana, A. M.; Gil, J. I.; Alonso, J. M. Regioselective Synthesis of 4- and 5-Oxazole-Phosphine Oxides and -Phosphonates from 2H-Azirines and Acyl Chlorides. Tetrahedron. 2004, 60, 8937–8947. DOI: 10.1016/j.tet.2004.07.013.
  • Węglarz-Tomczak, E.; Berlicki, Ł.; Pawełczak, M.; Nocek, B.; Joachimiak, A.; Mucha, A. A Structural Insight into the P1-S1 Binding Mode of Diaminoethylphosphonic and Phosphinic Acids, Selective Inhibitors of Alanine Aminopeptidases. Eur. J. Med. Chem. 2016, 117, 187–196. DOI: 10.1016/j.ejmech.2016.04.018.
  • Węglarz-Tomczak, E.; Staszewska, K.; Talma, M.; Mucha, A. Enantiomeric α,β-Diaminoethylphosphonic Acids as Potent Inhibitors of Aminopeptidases—Stereoselective Synthesis and Biological Activity. Tetrahedron Lett. 2016, 57, 4812–4814. DOI: 10.1016/j.tetlet.2016.09.051.
  • Doğan, Ö.; Babiz, H.; Gözen, A. G.; Budak, S. Synthesis of 2-Aziridinyl Phosphonates by Modified Gabriel–Cromwell Reaction and Their Antibacterial Activities. Eur. J. Med. Chem. 2011, 46, 2485–2489. DOI: 10.1016/j.ejmech.2011.03.037.
  • Dogan, Ö.; Çakır, S. P.; Beksultanova, N.; Altanlar, N.; Şimşek, D.; Karabıyık, H. Enantioselective Synthesis of New Chiral 2-Aziridinyl Phosphonates and Studies of Their Biological Activities. Tetrahedron: Asymmetry. 2017, 28, 324–329. DOI: 10.1016/j.tetasy.2017.01.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.