247
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Polystyrene-supported phosphine oxide-catalysed Beckmann rearrangement of ketoximes in 1,1,1,3,3,3-hexafluoro-2-propanol

, , &
Pages 210-214 | Received 02 Jul 2018, Accepted 19 Oct 2018, Published online: 18 Nov 2018

References

  • Jones, B. Mechanism of the Beckmann Rearrangement. Nature 1946, 157, 519. doi:10.1038/157519a0.
  • Jones, B. Kinetics and Mechanism of the Beckmann Rearrangement. Chem. Rev. 1944, 35, 335–350. doi:10.1021/cr60112a001.
  • Beckmann, E. Zur Kenntniss Der Isonitrosoverbindungen. Ber. Dtsch. Chem. Ges. 1886, 19, 988–993. doi:10.1002/cber.188601901222.
  • Gawley, R. E. The Beckmann Reactions: Rearrangements, Elimination-Additions, Fragmentations, and Rearrangement-Cyclizations. Org. React. 1988, 35, 1–420. doi:10.1002/0471264180.or035.01.
  • Weissermel, K.; Arpe, H.-J. Industrial Organic Chemistry, 4th ed.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2003; pp 239–266.
  • Arisawa, M.; Yamaguchi, M. Rhodium-Catalyzed Beckmann Rearrangement. Org. Lett. 2001, 3, 311–312. doi:10.1021/ol006951z.
  • Owston, N. A.; Parker, A. J.; Williams, J. M. Highly Efficient Ruthenium-Catalyzed Oxime to Amide Rearrangement. Org. Lett. 2007, 9, 3599–3601. doi:10.1021/ol701445n.
  • Raju, G.; Guguloth, V.; Satyanarayana, B. One Pot Synthesis of Phenanthridines Using a Palladium-Catalyzed Cyclization of Aromatic Ketoximes with Aryl Iodides via Beckmann Rearrangement. RSC Adv. 2016, 6, 45036–45040. doi:10.1039/C6RA07423E.
  • Sun, C.; Yao, W.; Zhang, B.; Huang, X.; Yu, J. Zn-Catalyzed Beckmann Rearrangement Reaction. Chin. J. Org. Chem. 2018, 38, 457–463. doi:10.6023/cjoc201708018.
  • Kiely-Collins, H.; Sechi, I.; Brennan, P.; McLaughlin, M. Mild, Calcium Catalysed Beckmann Rearrangements. Chem. Commun. 2018, 54, 654–657. doi:10.1039/c7cc09491d.
  • (a) Furuya, Y.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 2005, 127, 11240–11241. doi:10.1021/ja053441x; (b) Zhu, M.; Cha, C.; Deng, W.-P.; Shi, X. X. Tetrahedron Lett. 2006, 47, 4861–4863. doi:10.1016/j.tetlet.2006.05.029; (c) Hashimoto, M.; Obora, Y.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 2008, 73, 2894–2897. doi:10.1021/jo702277g; (d) An, N.; Tian, B. X.; Pi, H. J.; Eriksson, L. A.; Deng, W. P. J. Org. Chem. 2013, 78, 4297–4302. doi:10.1021/jo400278c; (e) Augustine, J. K.; Kumar, R.; Bombrun, A.; Mandal, A. B. Tetrahedron Lett. 2011, 52, 1074–1077. doi:10.1016/j.tetlet.2010.12.090; (f) Ronchin, L.; Vavasori, A.; Bortoluzzi, M. Catal. Commun. 2008, 10, 251–256. doi:10.1016/j.catcom.2008.09.001; (g) Gao, Y.; Liu, J.; Li, Z.; Guo, T.; Xu, S.; Zhu, H.; Wei, F.; Chen, S.; Gebru, H.; Guo, K. J. Org. Chem. 2018, 83, 2040–2049. doi:10.1021/acs.joc.7b02983; (h) Vanos, C. M.; Lambert, T. H. Chem. Sci. 2010, 1, 705–708. doi:10.1039/C0SC00421A; (i) Mo, X.; Morgan, T; Ang, H.; Hall, G. J. Am. Chem. Soc. 2018, 140, 5264–5271. doi:10.1021/jacs.8b01618; (j) Azadi, R.; Shams, L. Lett. Org. Chem. 2017, 14, 141–145. doi:10.2174/1570178614666170203093902; (k) Zhou, A.; Zheng, D.; Zhu, X.; Wang, M. Chin. J. Org. Chem. 2018, 38, 2905–2910. doi:10.6023/cjoc201706020; (l) Oishi, R.; Segi, K.; Hamamoto, H.; Nakamura, A.; Maegawa, T.; Miki, Y. Synlett 2018, 29, 1465–1468. doi:10.1055/s-0037-1609686.
  • (a) Linares, M.; Vargas, C.; Garcia, A.; Ochoa-Hernandez, C.; Cejka, J.; Garcia-Munoz, R.; Serrano, D. Catal. Sci. Technol. 2017, 7, 181–190. doi:10.1039/c6cy01895e; (b) Keyhaniyan, M.; Shiri, A.; Eshghi, H.; Khojastehnezhad, A. Appl. Organomet. Chem. 2018, 32, e4344. doi:10.1002/aoc.4344.
  • Ikushima, Y.; Hatakeda, K.; Sato, O.; Yokoyama, T.; Arai, M. Acceleration of Synthetic Organic Reactions Using Supercritical Water: Noncatalytic Beckmann and Pinacol Rearrangements. J. Am. Chem. Soc. 2000, 122, 1908–1918. doi:10.1021/ja9925251.
  • Guo, S.; Du, Z.; Zhang, S.; Li, D.; Li, Z.; Deng, Y. Clean Beckmann Rearrangement of Cyclohexanone Oxime in Caprolactam-Based Brønsted Acidic Ionic Liquids. Green Chem. 2006, 8, 296–300. doi:10.1039/B513139A.
  • (a) Bittner, S.; Grinberg, S. J. Chem. Soc., Perkin Trans. 1 1976, 1708–1711. doi:10.1039/P19760001708; (b) Xu, F.; Wang, N.; Tian, Y.; Chen, Y.; Liu, W. Synth. Commun. 2012, 42, 3532–3539. doi:10.1080/00397911.2011.585270; (c) Fujioka, H.; Matsumoto, N.; Kuboki, Y.; Mitsukane, H.; Ohta, R.; Kimura, T.; Murai, K. Chem. Pharm. Bull. 2016, 64, 718–722. doi:10.1248/cpb.c16-00006; (d) Gao, P.; Bai, Z. Chin. J. Chem. 2017, 35, 1673–1677. doi:10.1002/cjoc.201700191.
  • Denton, R. M.; An, J.; Adeniran, B. Phosphine Oxide-Catalysed Chlorination Reactions of Alcohols under Appel Conditions. Chem. Commun. 2010, 46, 3025–3027. doi:10.1039/C002825H.
  • Denton, R. M.; Tang, X.; Przeslak, A. Catalysis of Phosphorus(V)-Mediated Transformations: Dichlorination Reactions of Epoxides under Appel Conditions. Org. Lett. 2010, 12, 4678–4681. doi:10.1021/ol102010h.
  • Denton, R. M.; An, J.; Adeniran, B.; Blake, A.; Lewis, W.; Poulton, A. Catalytic Phosphorus(V)-Mediated Nucleophilic Substitution Reactions: Development of a Catalytic Appel Reaction. J. Org. Chem. 2011, 76, 6749–6767. doi:10.1021/jo201085r.
  • An, J.; Denton, R. M.; Lambert, T.; Nacsa, E. The Development of Catalytic Nucleophilic Substitution Reactions: Challenges, Progress and Future Directions. Org. Biomol. Chem. 2014, 12, 2993–3003. doi:10.1039/C4OB00032C.
  • Shipilovskikh, S.; Vaganov, V.; Denisova, E.; Rubtsov, A.; Malkov, A. Dehydration of Amides to Nitriles under Conditions of a Catalytic Appel Reaction. Org. Lett. 2018, 20, 728–731. doi:10.1021/acs.orglett.7b03862.
  • Khaksar, S.; Talesh, S. M. Transition Metal-Free Oxidation of Activated Alcohols to Aldehydes and Ketones in 1,1,1,3,3,3-Hexafluoro-2-Propanol. J. Fluorine Chem 2012, 140, 95–98. doi:10.1016/j.jfluchem.2012.05.017.
  • Wang, L.; Dai, D.; Chen, Q.; He, M. Rapid and Green Synthesis of Phenols Catalyzed by a Deep Eutectic Mixture Based on Fluorinated Alcohol in Water. J. Fluorine Chem 2014, 158, 44–47. doi:10.1016/j.jfluchem.2013.12.006.
  • Vekariya, R. H.; Aubé, J. Hexafluoro-2-propanol-Promoted Intermolecular Friedel–Crafts Acylation Reaction. Org. Lett. 2016, 18, 3534–3537. doi:10.1021/acs.orglett.6b01460.
  • Vuković, V. D.; Richmond, E.; Wolf, E.; Moran, J. Catalytic Friedel-Crafts Reactions of Highly Electronically Deactivated Benzylic Alcohols. Angew. Chem. Int. Ed. 2017, 56, 3085–3089. doi:10.1002/anie.201612573.
  • Colomer, I.; Chamberlain, A. E. R.; Haughey, M. B.; Donohoe, T. Hexafluoroisopropanol as a Highly Versatile Solvent. Nat. Rev. Chem. 2017, 1, 0088. doi:10.1038/s41570-017-0088.
  • Maleki, B.; Ashrafi, S. S.; Tayebee, R. Lewis Acid Free Synthesis of 3,4-Dihydro-1H-Indazolo[1,2-b]Phthalazine-1,6,11(2H,13H)-Triones Promoted by 1,1,1,3,3,3-Hexafluoro-2-Propanol. RSC Adv. 2014, 4, 41521–41528. doi:10.1039/C4RA06768A.
  • Maleki, B.; Raei, M.; Akbarzadeh, E.; Ghasemnejad-Bosra, H.; Sedrpoushan, A.; Ashrafi, S. S.; Dehdashti, M. N. Chemoselective Synthesis of 2,2'-Arylmethylene bis -(3-Hydroxy-2-cyclohexenes) (“Tetraketones”) in Hexafluoro-2-propanol. Org. Prep. Proced. Int. 2016, 48, 62–71. doi:10.1080/00304948.2016.1127102.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.