722
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

POCl3 promoted metal-free synthesis of tertiary amides by coupling of carboxylic acids and N,N-disubstituted formamides

, , , , , & show all
Pages 236-240 | Received 07 Jul 2018, Accepted 21 Oct 2018, Published online: 20 Feb 2019

References

  • (a) Costall, B.; Sui-Chun, Hui, G.; Naylor, R. J. Differential Actions of Substituted Benzamides on Pre- and Postsynaptic Dopamine Receptor Mechanisms in the Nucleus Accumbens. J. Pharm. Pharmacol. 1980, 32, 594–596. doi: 10.1111/j.2042-7158.1980.tb13009.x. (b) Florvall, L.; Oegren, S. O. Potential Neuroleptic Agents. 2, 6-Dialkoxybenzamide Derivatives with Potent Dopamine Receptor Blocking Activities. J. Med. Chem. 1982, 25, 1280–1286. doi: 10.1021/jm00353a003. (c) Pitzer, J.; Steiner, K. Amides in Nature and Biocatalysis. J. Biotechnol. 2016, 235, 32–46. doi: 10.1016/j.jbiotec.2016.03.023.
  • (a) de Figueiredo, R. M.; Suppo, J.-S.; Campagne, J.-M. Nonclassical Routes for Amide Bond Formation. Chem. Rev. 2016, 116, 12029–12122. doi: 10.1021/acs.chemrev.6b00237. (b) Dunetz, J. R.; Magano, J.; Weisenburger, G. A. Large-Scale, Applications of Amide Coupling Reagents for the Synthesis of Pharmaceuticals. Org. Process Res. Dev. 2016, 20, 140–177. doi: 10.1021/op500305s. (c) Ojeda-Porras, A.; Gamba-Sánchez, D. Recent Developments in Amide Synthesis Using Nonactivated Starting Materials. J. Org. Chem. 2016, 81, 11548–11555. doi: 10.1021/acs.joc.6b02358. (d) Bannwart, L.; Abele, S.; Tortoioli, S. Metal-Free Amidation of Acids with Formamides and T3P. Synthesis 2016, 48, 2069–2078. doi: 10.1055/s-0035-1561427. (e) Bode, J. W.; Fox, R. M.; Baucom, K. D. Chemoselective Amide Ligations by Decarboxylative Condensations of N-Alkylhydroxylamines and α-Ketoacids. Angew. Chem. Int. Ed. 2006, 45, 1248–1252. doi: 10.1002/anie.200503991. (f) Ghosh, S.; Jana, C. K. Aminofluorene-Mediated Biomimetic Domino Amination–Oxygenation of Aldehydes to Amides. Org. Lett. 2016, 18, 5788–5791. doi: 10.1021/acs.orglett.6b02465. (g) Schwieter, K. E.; Johnston, J. N. A One-Pot Amidation of Primary Nitroalkanes. Chem. Commun. 2016, 52, 152–155. doi: 10.1039/c5cc08415f. (h) Kuang, Z.; Li, B.; Song, Q. Cu/Pd Cooperatively Catalyzed Tandem Intramolecular anti-Markovnikov Hydroarylation of Unsaturated Amides: facile Construction of 3,4-Dihydroquinolinones via Borylation/Intramolecular C(sp3)-C(sp2) Cross Coupling. Chem. Commun. 2018, 54, 34–37. doi: 10.1039/C7CC07180A. (i) Kumar, A.; Espinosa-Jalapa, N. A.; Leitus, G.; Diskin-Posner, Y.; Avram, L.; Milstein, D. Direct Synthesis of Amides by Dehydrogenative Coupling of Amines with Either Alcohols or Esters: Manganese Pincer Complex as Catalyst. Angew. Chem. Int. Ed. 2017, 56, 14992–14996. doi: 10.1002/ange.201709180.
  • (a) Mane, R. S.; Bhanage, B. M. Pd/C-Catalyzed Aminocarbonylation of Aryl Iodides via Oxidative C–N Bond Activation of Tertiary Amines to Tertiary Amides. J. Org. Chem. 2016, 81, 1223–1228. doi: 10.1021/acs.joc.5b02385. (b) Iranpoor, N.; Firouzabadi, H.; Motevalli, S. Silicadiphenyl Phosphinite (SDPP)/Pd (0) Nanocatalyst for Efficient Aminocarbonylation of Aryl Halides with POCl3 and DMF. J. Mol. Catal. A: Chem. 2012, 355, 69–74. doi: 10.1016/j.molcata.2011.10.021. (c) Sawant, D. N.; Wagh, Y. S.; Bhatte, K. D.; Bhanage, B. M. Palladium-Catalyzed Carbon-Monoxide-Free Aminocarbonylation of Aryl Halides Using N-Substituted Formamides as an Amide Source. J. Org. Chem. 2011, 76, 5489–5494. doi: 10.1021/jo200754v. (d) Sawant, D. N.; Wagh, Y. S.; Tambade, P. J.; Bhatte, K. D.; Bhanage, B. M. Cyanides-Free Cyanation of Aryl Halides Using Formamide. Adv. Synth. Catal. 2011, 353, 781–787. doi: 10.1002/adsc.201000807. (e) Tambade, P. J.; Patil, Y. P.; Bhanushali, M. J.; Bhanage, B. M. Pd/C: An Efficient, Heterogeneous and Reusable Catalyst for Carbon Monoxide-Free Aminocarbonylation of Aryl Iodides. Tetrahedron Lett. 2008, 49, 2221–2224. doi: 10.1016/j.tetlet.2008.02.049. (f) Ju, J.; Jeong, M.; Moon, J.; Hyun, M. J.; Lee, S. Aminocarbonylation of Aryl Halides Using a Nickel Phosphite Catalytic System. Org. Lett. 2007, 9, 4615–4618. doi: 10.1021/ol702058e. (g) Papp, M.; Skoda-Földes, R. Phosphine-Free Double Carbonylation of Iodobenzene in the Presence of Reusable Supported Palladium Catalysts. J. Mol. Catal. A: Chem. 2013, 378, 193–199. doi: 10.1016/j.molcata.2013.06.002. (h) Hosoi, K.; Nozaki, K.; Hiyama, T. Carbon Monoxide Free Aminocarbonylation of Aryl and Alkenyl Iodides Using DMF as an Amide Source. Org. Lett. 2002, 4, 2849–2851. doi: 10.1021/ol026236k. (i) Kumar, P. S.; Kumar, G. S.; Kumar, R. A.; Reddy, N. V.; Rajender Reddy, K. Copper-Catalyzed Oxidative Coupling of Carboxylic Acids with N,N-Dialkylformamides: An Approach to the Synthesis of Amides. Eur. J. Org. Chem. 2013, 7, 1218–1222. doi: 10.1002/ejoc.201201544. (j) Liu, H.-Q.; Liu, J.; Zhang, Y.-H.; Shao, C.-D.; Yu, J.-X. Copper-Catalyzed Amide Bond Formation from Formamides and Carboxylic Acids. Chin. Chem. Lett. 2015, 26, 11–14. doi: 10.1016/j.cclet.2014.09.007. (k) Priyadarshini, S.; Joseph, P. J. A.; Kantam, M. L. Copper Catalyzed Cross-Coupling Reactions of Carboxylic Acids: An Expedient Route to Amides, 5-Substituted Gamma-Lactams and Alpha-Acyloxy Esters. RSC Adv. 2013, 3, 18283–18287. doi: 10.1039/C3RA41000E. (l) Xie, Y.-X.; Song, R.-J.; Yang, X.-H.; Xiang, J.-N.; Li, J.-H. Copper-Catalyzed Amidation of Acids Using Formamides as the Amine Source. Eur. J. Org. Chem. 2013, 25, 5737–5742. doi: 10.1002/ejoc.201300543. (m) Kumagai, T.; Anki, T.; Ebi, T.; Konishi, A.; Matsumoto, K.; Kurata, H.; Kawase, T. An Effective Synthesis of N,N-Dimethylamides from Carboxylic Acids and a New Route from N,N-Dimethylamides to 1,2-Diaryl-1,2-Diketones. Tetrahedron 2010, 66, 8968–8973. doi: 10.1016/j.tet.2010.09.037.
  • (a) Gao, L.; Tang, H.; Wang, Z. Oxidative Coupling of Methylamine with an Aminyl Radical: direct Amidation Catalyzed by I 2/TBHP with HCl. Chem. Commun. 2014, 50, 4085–4088. doi: 10.1039/C4CC00621F. (b) Baba, H.; Moriyama, K.; Togo, H. Preparation of N,N-Dimethyl Aromatic Amides from Aromatic Aldehydes with Dimethylamine and Iodine Reagents. Synlett 2012, 23, 1175–1180. doi: 10.1055/s-0031-1290659. (c) Ghosh, S. C.; Ngiam, J. S. Y.; Seayad, A. M.; Tuan, D. T.; Chai, C. L. L.; Chen, A. Copper-Catalyzed Oxidative Amidation of Aldehydes with Amine Salts: Synthesis of Primary, Secondary, and Tertiary Amides. J. Org. Chem. 2012, 77, 8007–8015. doi: 10.1021/jo301252c. (d) Huang, H.; Yuan, G.; Li, X.; Jiang, H. Electrochemical Synthesis of Amides: direct Transformation of Methyl Ketones with Formamides. Tetrahedron Lett. 2013, 54, 7156–7159. doi: 10.1016/j.tetlet.2013.10.101. (e) Li, H.; Xie, J.; Xue, Q.; Cheng, Y.; Zhu, C. Metal-Free n-Bu4NI-Catalyzed Direct Synthesis of Amides from Alcohols and N,N-Disubstituted Formamides. Tetrahedron Lett. 2012, 53, 6479–6482. doi: 10.1016/j.tetlet.2012.09.039. (f) Saberi, D.; Heydari, A. Oxidative Amidation of Aromatic Aldehydes with Amine Hydrochloride Salts Catalyzed by Silica-Coated Magnetic Carbon Nanotubes (MagCNTs@SiO2)-Immobilized imine-Cu(I). Appl. Organomet. Chem. 2014, 28, 101–108. doi: 10.1002/aoc.3087. (g) Zhang, L.; Wang, W.; Wang, A.; Cui, Y.; Huang, Y.; Zhang, T. Aerobic Oxidative Coupling of Alcohols and Amines over Au-Pd/Resin in Water: Au/Pd Molar Ratios Switch the Reaction Pathways to Amides or Imines. Green Chem. 2013, 15, 2680–2684. doi: 10.1039/C3GC41117F. (i) Liu, H.; Zhao, L.; Yuan, Y.; Xu, Z.; Chen, K.; Qiu, S.; Tan, H. Potassium Thioacids Mediated Selective Amide and Peptide Constructions Enabled by Visible Light Photoredox Catalysis. ACS Catal. 2016, 6, 1732–1736. doi: 10.1021/acscatal.5b02943. (j) Valeur, E.; Bradley, M. Amide Bond Formation: Beyond the Myth of Coupling Reagents. Chem. Soc. Rev. 2009, 38, 606–631. doi: 10.1039/B701677H. (k) Fu, R.; Yang, Y.; Zhang, J.; Shao, J.; Xia, X.; Ma, Y.; Yuan, R. Direct Oxidative Amidation of Aldehydes with Amines Catalyzed by Heteropolyanion-Based Ionic Liquids under Solvent-Free Conditions via a Dual-Catalysis Process. Org. Biomol. Chem. 2016, 14, 1784–1793. doi: 10.1039/C5OB02376A.
  • (a) Gooßen, L. J.; Rodríguez, N.; Gooßen, K.; Carboxylic Acids as Substrates in Homogeneous Catalysis. Angew. Chem. Int. Ed. 2008, 4. 3100–3120. doi: 10.1002/anie.200704782. (b) Rodriguez, N.; Goossen, L. Decarboxylative Coupling Reactions: A Modern Strategy for C–C-Bond Formation. J. Chem. Soc. Rev. 2011, 40, 5030–5048. doi: 10.1039/C1CS15093F. (c) Shang, R.; Liu, L. Transition Metal-Catalyzed Decarboxylative Cross-Coupling Reactions. Sci. China Chem. 2011, 54, 1670–1687. doi: 10.1007/s11426-011-4381-0. (d) Dzik, W. I.; Lange, P. P.; Gooßen, L. J. Carboxylates as Sources of Carbon Nucleophiles and Electrophiles: comparison of Decarboxylative and Decarbonylative Pathways. Chem. Sci. 2012, 3, 2671–2678. doi: 10.1039/C2SC20312J. (e) Cornella, J.; Larrosa, I. Decarboxylative Carbon-Carbon Bond-Forming Transformations of (hetero) Aromatic Carboxylic Acids. Synthesis 2012, 44, 653–676. doi: 10.1055/s-0031-1289686. (f) Gooßen, L. J.; Gooßen, K.; Rodríguez, N.; Blanchot, M.; Linder, C.; Zimmermann, B. New Catalytic Transformations of Carboxylic Acids. Pure Appl. Chem. 2008, 80, 1725–1733. doi: 10.1351/pac200880081725. (g) Hosoi, K.; Nozaki, K.; Hiyama, T. Carbon Monoxide Free Aminocarbonylation of Aryl and Alkenyl Iodides Using DMF as an Amide Source. Org. Lett. 2002, 4, 2849–2851. doi: 10.1021/ol026236k.
  • Kürti, L.; Czakó, B. Strategic Applications of Named Reactions in Organic Synthesis; Elsevier Inc.: Amsterdam, 2005.
  • Bi, X.; Li, J.; Shi, E.; Wang, H.; Gao, R.; Xiao, J. Ru-Catalyzed Direct Amidation of Carboxylic Acids with N-Substituted Formamides. Tetrahedron 2016, 72, 8210–8214. doi: 10.1016/j.tet.2016.10.043.
  • (a) Ding, S.; Jiao, N.; N,N-Dimethylformamide: A Multipurpose Building Block. Angew. Chem. Int. Ed. 2012, 51, 9226–9237. doi: 10.1002/anie.201200859. (b) Muzart, J. N,N-Dimethylformamide: much More than a Solvent. Tetrahedron 2009, 65, 8313–8323. doi: 10.1016/j.tet.2009.06.091

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.