299
Views
13
CrossRef citations to date
0
Altmetric
Reviews

Progress of electrochemical С(sp2)-H phosphonation

ORCID Icon & ORCID Icon
Pages 415-419 | Received 06 Sep 2018, Accepted 23 Oct 2018, Published online: 03 Dec 2018

References

  • Corbridge, D. E. C. Phosphorus: Chemistry, Biochemistry and Technology. CRC Press, London, 2013; 6th ed.
  • Budnikova, Y. H.; Sinyashin, O. G. Phosphorylation of C–H Bonds of Aromatic Compounds Using Metals and Metal Complexes. Russ. Chem. Rev. 2015, 84, 917–951.
  • Kostova, I. Synthetic and Natural Coumarins as Cytotoxic Agents. Curr. Med. Chem. Anticancer Agents. 2005, 5, 29–46.
  • Venugopala, K. N.; Rashmi, V.; Odhav, B. Review on Natural Coumarin Lead Compounds for Their Pharmacological Activity. Biomed. Res. Int. 2013, 2013, 963248.
  • Budzisz, E.; Brzezinska, E.; Krajewska, U.; Rozalski, M. Cytotoxic Effects, Alkylating Properties and Molecular Modelling of Coumarin Derivatives and Their Phosphonic Analogues. Eur. J. Med. Chem. 2003, 38, 597–643.
  • Sivendran, S.; Jones, V.; Sun, D.; Wang, Y.; Grzegorzewicz, A. E.; Scherman, M. S.; Napper, A. D.; McCammon, J. A.; Lee, R. E.; Diamond, S. L.; McNeil, M. Identification of Triazinoindol-Benzimidazolones as Nanomolar Inhibitors of the Mycobacterium tuberculosis Enzyme TDP-6-Deoxy-d-Xylo-4-Hexopyranosid-4-Ulose 3,5-Epimerase (RmlC). Bioorg. Med. Chem. 2010, 18, 896–908.
  • Dang, Q.; Liu, Y.; Cashion, D. K.; Kasib-Hatla, S. R.; Jiang, T.; Taplin, F.; Jacintho, J. D.; Li, H.; Sun, Z.; Fan, Y.; et al. Discovery of a Series of Phosphonic Acid-Containing Thiazoles and Orally Bioavailable Diamide Prodrugs That Lower Glucose in Diabetic Animals Through Inhibition of Fructose-1,6-Bisphosphatase. J. Med. Chem. 2011, 54, 153–165.
  • Chen, X.; Kopecky, D. J.; Mihalic, J.; Jeffries, S.; Min, X.; Heath, J.; Deignan, J.; Lai, S.; Fu, Z.; Guimaraes, C.; et al. Structure-guided Design, Synthesis, and Evaluation of Guanine-derived Inhibitors of the eIF4E mRNA-cap Interaction. J. Med. Chem. 2012, 55, 3837–3851.
  • Li, X. S.; Zhang, D. W.; Pang, H.; Shen, F.; Fu, H.; Jiang, Y. Y.; Zhao, Y. F. Synthesis of a Diverse Series of Phosphacoumarins with Biological Activity. Org. Lett. 2005, 7, 4919–4922.
  • Yu, X.; Ding, Q.; Wu, J. Generation of Diverse 2H-Isoindol-1-Ylphosphonates Via Three-Component Reaction of 2-Alkynylbenzaldehyde, Aniline, and Phosphite. J. Comb. Chem. 2010, 12, 743–746.
  • Chen, L.; Fang, X.-Y.; Zou, Y.-X. A Highly Efficient Nucleophilic Substitution Reaction between R2P(O)H and Triarylmethanols to Synthesize Phosphorus-substituted Triarylmethanes. Org. Biomol. Chem. 2018, 16, 951–956.
  • Gronnow, M. J.; White, R. J.; Clark, J. H.; Macquarrie, D. Energy Efficiency in Chemical Reactions: A Comparative Study of Different Reaction Techniques. Org. Process Res. Dev. 2005, 9, 516–518.
  • Mata, T. M.; Smith, R. L.; Young, D. M.; Costa, C. A. V. Evaluating the Environmental Friendliness, Economics and Energy Efficiency of Chemical Processes: Heat Integration. Clean Technol.Environ. Policy. 2003, 5, 302–309.
  • Riekert, L. The Efficiency of Energy-Utilization in Chemical Processes. Chem. Eng. Sci. 1974, 29, 1613–1620.
  • Denbigh, K. G. The Second-Law Efficiency of Chemical Processes. Chem. Eng. Sci. 1956, 6, 1–9.
  • Ciamician, G. The Photochemistry of The Future. Science. 1912, 36, 385–394.
  • Sharma, U. K.; Gemoets, H. P. L.; Schröder, F.; Noël, T.; Van der Eycken, E. V. Merger of Visible-Light Photoredox Catalysis and C–H Activation for the Room-Temperature C-2 Acylation of Indoles in Batch and Flow. ACS Catal. 2017, 7, 3818–3823.
  • Fabry, D. C.; Rueping, M. Merging Visible Light Photoredox Catalysis with Metal Catalyzed C-H Activations: On the Role of Oxygen and Superoxide Ions as Oxidants. Acc. Chem. Res. 2016, 49, 1969–1979.
  • Ghosh, I.; Marzo, L.; Das, A.; Shaikh, R.; König, B. Visible Light Mediated Photoredox Catalytic Arylation Reactions. Acc. Chem. Res. 2016, 49, 1566–1577.
  • Karkas, M. D.; Porco, J. A., Jr.; Stephenson, C. R. Photochemical Approaches to Complex Chemotypes: Applications in Natural Product Synthesis. Chem. Rev. 2016, 116, 9683–9747.
  • Ravelli, D.; Protti, S.; Fagnoni, M. Carbon-Carbon Bond Forming Reactions via Photogenerated Intermediates. Chem. Rev. 2016, 116, 9850–9913.
  • Shaw, M. H.; Twilton, J.; MacMillan, D. W. Photoredox Catalysis in Organic Chemistry. J. Org. Chem. 2016, 81, 6898–6926.
  • Romero, N. A.; Nicewicz, D. A. Organic Photoredox Catalysis. Chem. Rev. 2016, 116, 10075–10166.
  • Skubi, K. L.; Blum, T. R.; Yoon, T. P. Dual Catalysis Strategies in Photochemical Synthesis. Chem. Rev. 2016, 116, 10035–10074.
  • Qin, Q.; Jiang, H.; Hu, Z.; Ren, D.; Yu, S. Functionalization of C-H Bonds by Photoredox Catalysis. Chem. Rec. 2017, 17, 754–774.
  • Gao, Y.; Tang, G.; Zhao, Y. Recent Progress toward Organophosphorus Compounds Based on Phosphorus-Centered Radical Difunctionalizations. Phosphorus Sulfur Silicon Relat. Elem. 2017, 192, 589–596.
  • Budnikova, Y. H.; Dudkina, Y. B.; Khrizanforov, M. N. Redox-Induced Aromatic C–H Bond Functionalization in Metal Complex Catalysis from the Electrochemical Point of View. Inorganics. 2017, 5, 70–88.
  • Yan, M.; Kawamata, Y.; Baran, P. S. Synthetic Organic Electrochemical Methods Since 2000: On the Verge of a Renaissance. Chem. Rev. 2017, 117, 13230–13319.
  • Sauermann, N.; Meyer, T. H.; Qiu, Y.; Ackermann, L. Electrocatalytic C–H Activation. ACS Catal. 2018, 8, 7086–7103.
  • Budnikova, Y. H.; Gryaznova, T. V.; Grinenko, V. V.; Dudkina, Y. B.; Khrizanforov, M. N. Eco-Efficient Electrocatalytic C-P Bond Formation. Pure Appl. Chem. 2017, 89, 311–330.
  • Abakumov, G. A.; Piskunov, A. V.; Cherkasov, V. K.; Fedushkin, I. L.; Ananikov, V. P.; Eremin, D. B.; Gordeev, E. G.; Beletskaya, I. P.; Averin, A. D.; Bochkarev, M. N.; et al. Organoelement Chemistry: promising Growth Areas and Challenges. Russ. Chem. Rev. 2018, 87, 393–507.
  • Budnikova, Y. H. Metal Complex Catalysis in Organic Electrosynthesis. Russ. Chem. Rev. 2002, 71, 111–139.
  • Mikhaylov, D. Y.; Budnikova, Y. H. Fluoroalkylation of Organic Compounds. Russ. Chem. Rev. 2013, 82, 835–864.
  • Khrizanforov, M. N.; Strekalova, S. O.; Gryaznova, T. V.; Khrizanforova, V. V.; Budnikova, Y. H. New Method of Metal-Induced Oxidative Phosphorylation of Benzene. Russ. Chem. Bull. 2015, 64, 1926–1932.
  • Khrizanforov, M. N.; Strekalova, S. O.; Kholin, K. V.; Khrizanforova, V. V.; Grinenko, V. V.; Gryaznova, T. V.; Budnikova, Y. H. One-Stage Synthesis of FcP(O)(OC 2 H 5 ) 2 from Ferrocene and α-Hydroxyethylphosphonate. RSC Adv. 2016, 6, 42701–42707.
  • Khrizanforov, M. N.; Strekalova, S. O.; Kholin, K. V.; Khrizanforova, V. V.; Kadirov, M. K.; Gryaznova, T. V.; Budnikova, Y. H. Novel Approach to Metal-Induced Oxidative Phosphorylation of Aromatic Compounds. Catal. Today. 2017, 279, 133–141.
  • Strekalova, S. O.; Khrizanforov, M. N.; Gryaznova, T. V.; Khrizanforov, V. V.; Budnikova, Y. H. Electrochemical Phosphorylation of Coumarins Catalyzed by Transition Metal Complexes (Ni–Mn, Co–Mn). Russ. Chem. Bull. 2016, 65, 1295–1298.
  • Khrizanforov, M.; Strekalova, S.; Khrizanforova, V.; Dobrynin, A.; Kholin, K.; Gryaznova, T.; Grinenko, V.; Gubaidullin, A.; Kadirov, M.; Budnikova, Y. Cobalt-Catalyzed Green Cross-Dehydrogenative C(sp2)-H/P-H Coupling Reactions. Top. Catal. 2018, 1–8.
  • Khrizanforova, V. V.; Kholin, K. V.; Khrizanforov, M. N.; Kadirov, M. K.; Budnikova, Y. H. Electrooxidative CH/PH Functionalization as a Novel Way to Synthesize Benzo[ b ]Phosphole Oxides Mediated by Catalytic Amounts of Silver Acetate. New J. Chem. 2018, 42, 930–935.
  • Gryaznova, T. V.; Khrizanforov, M. N.; Strekalova, S. O.; Budnikova, Y. H.; Sinyshin, O. G. Electrochemical Oxidative Phosphonation of Azoles. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 1658–1659.
  • Yurko, E. O.; Gryaznova, T. V.; Kholin, K. V.; Khrizanforova, V. V.; Budnikova, Y. H. External Oxidant-Free Cross-Coupling: electrochemically Induced Aromatic C–H Phosphonation of Azoles with dialkyl- H -Phosphonates under Silver Catalysis. Dalton Trans. 2018, 47, 190–196.
  • Dudkina, Y. B.; Khrizanforov, M. N.; Gryaznova, T. V.; Budnikova, Y. H. Prospects of Synthetic Electrochemistry in the Development of New Methods of Electrocatalytic Fluoroalkylation. J. Organomet. Chem. 2014, 751, 301.
  • Dudkina, Y. B.; Mikhaylov, D. Y.; Gryaznova, T. V.; Sinyashin, O. G.; Vicic, D. A.; Budnikova, Y. H. MII/MIII-Catalyzed ortho-Fluoroalkylation of 2-Phenylpyridine. Eur. J. Org. Chem. 2012, 2012, 2114–2117.
  • Dudkina, Y. B.; Mikhaylov, D. Y.; Gryaznova, T. V.; Tufatullin, A. I.; Kataeva, O. N.; Vicic, D. A.; Budnikova, Y. H. Electrochemical Ortho Functionalization of 2-Phenylpyridine with Perfluorocarboxylic Acids Catalyzed by Palladium in Higher Oxidation States. Organometallics. 2013, 32, 4785–4792.
  • Dudkina, Y. B.; Gryaznova, T. V.; Sinyashin, O. G.; Budnikova, Y. H. Ligand-Directed Electrochemical Functionalization of C(sp2)–H Bonds in the Presence of the Palladium and Nickel Compounds. Russ. Chem. Bull. 2015, 64, 1713–1725.
  • Dudkina, Y. B.; Gryaznova, T. V.; Kataeva, O. N.; Budnikova, G. Y.; Sinyashin, O. G. Electrochemical C-H Phosphorylation of 2-Phenylpyridine in the Presence of Palladium Salts. Russ. Chem. Bull. 2014, 63, 64, 2641–2646.
  • Grayaznova, T. V.; Dudkina, Y. B.; Islamov, D. R.; Kataeva, O. N.; Sinyashin, O. G.; Vicic, D. A.; Budnikova, Y. Н. Pyridine-Directed Palladium-Catalyzed Electrochemical Phosphonation of C(sp2)–H Bond. J. Organomet. Chem. 2015, 785, 68–71.
  • Gryaznova, T.; Dudkina, Y.; Khrizanforov, M.; Sinyashin, O.; Kataeva, O.; Budnikova, Y. Electrochemical Properties of Diphosphonate-Bridged Palladacycles and Their Reactivity in Arene Phosphonation. J. Solid State Electrochem. 2015, 19, 2665–2672.
  • Dudkina, Y. B.; Kholin, K. V.; Gryaznova, T. V.; Islamov, D. R.; Kataeva, O. N.; Rizvanov, I. K.; Levitskaya, A. I.; Fominykh, O. D.; Balakina, M. Y.; Sinyashin, O. G.; et al. Redox Trends in Cyclometalated Palladium(ii) Complexes. Dalton Trans. 2017, 46, 165–177.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.