554
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Catalyst free one-pot synthesis of α-aminophosphonates in aqueous ethyl lactate

, , & ORCID Icon
Pages 528-532 | Received 04 Jul 2018, Accepted 26 Oct 2018, Published online: 18 Dec 2018

References

  • Aparicio, S.; Alcalde, R. The Green Solvent Ethyl Lactate: An Experimental and Theoretical Characterization. Green Chem. 2009, 11, 65–78. DOI:10.1039/b811909k.
  • Villanueva-Bermejo, D.; Reglero, G.; Fornari, T. Recent Advances in the Processing of Green Tea Biomolecules Using Ethyl Lactate. A Review. Trends Food Sci. Technol. 2017, 62, 1–12. DOI:10.1016/j.tifs.2016.12.009.
  • Garcia, G.; Atilhan, M.; Aparicio, S. Insights into Alkyl Lactate plus Water Mixed Fluids. J. Mol. Liq. 2014, 199, 215–223. DOI:10.1016/j.molliq.2014.09.016.
  • Manic, M. S.; Villanueva, D.; Fornari, T.; Queimada, A. J.; Macedo, E. A.; Najdanovic-Visak, V. Solubility of High-Value Compounds in Ethyl Lactate: Measurements and Modelling. J. Chem. Thermodyn. 2012, 48, 93–100. DOI:10.1016/j.jct.2011.12.005.
  • Bermejo, D. V.; Ibanez, E.; Reglero, G.; Fornari, T. Effect of Cosolvents (ethyl Lactate, Ethyl Acetate and Ethanol) on the Supercritical CO2 Extraction of Caffeine from Green Tea. J. Supercrit. Fluids 2016, 107, 507–512. DOI:10.1016/j.supflu.2015.07.008.
  • Kamalanathan, I.; Canal, L.; Hegarty, J.; Najdanovic-Visak, V. Partitioning of Amino Acids in the Novel Biphasic Systems Based on Environmentally Friendly Ethyl Lactate. Fluid Phase Equilib. 2018, 462, 6–13. DOI:10.1016/j.fluid.2018.01.016.
  • Lores, M.; Pajaro, M.; Alvarez-Casas, M.; Dominguez, J.; Garcia-Jares, C. Use of Ethyl Lactate to Extract Bioactive Compounds from Cytisus scoparius: Comparison of Pressurized Liquid Extraction and Medium Scale Ambient Temperature Systems. Talanta 2015, 140, 134–142. DOI:10.1016/j.talanta.2015.03.034.
  • Strati, I. F.; Oreopoulou, V. Process Optimisation for Recovery of Carotenoids from Tomato Waste. Food Chem. 2011, 129, 747–752. DOI:10.1016/j.foodchem.2011.05.015.
  • Wei, L.; Chen, X.; Liu, Y.; Wan, J. Recent Advances in Organic Synthesis Employing Ethyl Lactate as Green Reaction Medium. Chin. J. Org. Chem. 2016, 36, 954–961. DOI:10.6023/cjoc201512014.
  • Wan, J. P.; Cao, S.; Hu, C. F.; Wen, C. P. Iodine-Catalyzed, Ethyl-Lactate-Mediated Synthesis of 1,4-Benzothiazines via Metal-Free Cascade Enaminone Transamination and C-H Sulfenylation. Asian J. Org. Chem. 2018, 7, 328–331. DOI:10.1002/ajoc.201700680.
  • Zhang, M.; Fu, Q. Y.; Gao, G.; He, H. Y.; Zhang, Y.; Wu, Y. S.; Zhang, Z. H. Catalyst-Free, Visible-Light Promoted One-Pot Synthesis of Spirooxindole-Pyran Derivatives in Aqueous Ethyl Lactate. ACS Sustainable Chem. Eng. 2017, 5, 6175–6182. DOI:10.1021/acssuschemeng.7b01102.
  • Wan, J.-P.; Zhong, S.; Xie, L.; Cao, X.; Liu, Y.; Wei, L. KIO3-Catalyzed Aerobic Cross-Coupling Reactions of Enaminones and Thiophenols: Synthesis of Polyfunctionalized Alkenes by Metal-Free C-H Sulfenylation. Org. Lett. 2016, 18, 584–587. DOI:10.1021/acs.orglett.5b03608.
  • Gao, G.; Han, Y.; Zhang, Z. H. Catalyst Free Synthesis of Bis(indolyl)Methanes and 3,3-Bis(indolyl)Oxindoles in Aqueous Ethyl Lactate. Chemistryselect 2017, 2, 11561–11564. DOI:10.1002/slct.201702326.
  • Shen, G.; Zhou, H.; Du, P.; Liu, S.; Zou, K.; Uozumi, Y. Bronsted Acid-Catalyzed Selective C-C Bond Cleavage of 1,3-Diketones: A Facile Synthesis of 4(3H)-Quinazolinones in Aqueous Ethyl Lactate. RSC Adv. 2015, 5, 85646–85651. DOI:10.1039/c5ra17969f.
  • Cao, S.; Zhong, S.; Xin, L.; Wan, J.-P.; Wen, C. Visible-Light-Induced C = C Bond Cleavage of Enaminones for the Synthesis of 1,2-Diketones and Quinoxalines in Sustainable Medium. ChemCatChem 2015, 7, 1478–1482. DOI:10.1002/cctc.201500139.
  • Gao, Y.; Liu, Y. Y.; Wei, L.; Wan, J. P. Synthesis of Enaminones Containing Diverse N,N-Disubstitution via Simple Transamination: A Study with Sustainable Catalyst-Free Operation. Res. Chem. Intermed. 2017, 43, 5547–5555. DOI:10.1007/s11164-017-2946-z.
  • Bhat, P.; Shridhar, G.; Ladage, S.; Ravishankar, L. An Eco-Friendly Synthesis of 2-Pyrazoline Derivatives Catalysed by CeCl3·7H2O. J. Chem. Sci. 2017, 129, 1441–1448. DOI:10.1007/s12039-017-1327-x.
  • Gawande, M. B.; Bonifacio, V. D. B.; Luque, R.; Branco, P. S.; Varma, R. S. Benign by Design: catalyst-Free in-Water, on-Water Green Chemical Methodologies in Organic Synthesis. Chem. Soc. Rev. 2013, 42, 5522–5551. DOI:10.1039/c3cs60025d.
  • Gu, Y. L.; Jerome, F. Glycerol as a Sustainable Solvent for Green Chemistry. Green Chem. 2010, 12, 1127–1138. DOI:10.1039/c001628d.
  • Liu, J.; Wang, L.; Wang, X. X.; Xu, L. B.; Hao, Z. H.; Xiao, J. Fluorinated Alcohol-Mediated [4 + 3] Cycloaddition Reaction of Indolyl Alcohols with Cyclopentadiene. Org. Biomol. Chem. 2016, 14, 11510–11517. DOI:10.1039/c6ob01953f.
  • Deb, M. L.; Pegu, C. D.; Borpatra, P. J.; Saikia, P. J.; Baruah, P. K. Catalyst-Free Multi-Component Cascade C-H-Functionalization in Water Using Molecular Oxygen: An Approach to 1,3-Oxazines. Green Chem. 2017, 19, 4036–4042. DOI:10.1039/c7gc01494e.
  • Liu, P.; Hao, J. W.; Mo, L. P.; Zhang, Z. H. Recent Advances in the Application of Deep Eutectic Solvents as Sustainable Media as Well as Catalysts in Organic Reactions. RSC Adv. 2015, 5, 48675–48704. DOI:10.1039/c5ra05746a.
  • Zhang, M.; Liu, Y. H.; Shang, Z. R.; Hu, H. C.; Zhang, Z. H. Supported Molybdenum on Graphene Oxide/Fe3O4: An Efficient, Magnetically Separable Catalyst for One-Pot Construction of Spiro-Oxindole Dihydropyridines in Deep Eutectic Solvent under Microwave Irradiation. Catal. Commun. 2017, 88, 39–44. DOI:10.1016/j.catcom.2016.09.028.
  • Gao, G.; Wang, P.; Liu, P.; Zhang, W. H.; Mo, L. P.; Zhang, Z. H. Deep Eutectic Solvent Catalyzed One-Pot Synthesis of 4,7-Dihydro-1H-Pyrazolo[3,4-b]Pyridine-5-Carbonitriles. Chin. J. Org. Chem. 2018, 38, 846–854. DOI:10.6023/cjoc201711014.
  • Chen, M.-N.; Mo, L.-P.; Cui, Z.-S.; Zhang, Z.-H. Magnetic Nanocatalysts: Synthesis and Application in Multicomponent Reactions. Curr. Opin. Green. Sustain. Chem 2019, 15, 27–37. DOI:10.1016/j.cogsc.2018.08.009.
  • Sampath, C.; Harika, P.; Revaprasadu, N. Design, Green Synthesis, anti-Microbial, and anti-Oxidant Activities of Novel Alpha-Aminophosphonates via Kabachnik-Fields Reaction. Phosphorus, Sulfur Silicon Relat. Elem. 2016, 191, 1081–1085. DOI:10.1080/10426507.2015.1035379.
  • Mohammadiyan, E.; Ghafuri, H.; Kakanejadifard, A. A. New Procedure for Synthesis of α-Aminophosphonates by Aqueous Formic Acid as an Effective and Environment-Friendly Organocatalyst. J. Chem. Sci. 2017, 129, 1883–1891. DOI:10.1007/s12039-017-1394-z.
  • Oliveira, A. R.; Katla, R.; Rocha, M. P. D.; Albuquerque, T. B.; da Silva, C. D. G.; Kupfer, V. L.; Rinaldi, A. W.; Domingues, N. L. C. Zinc di(l-Prolinate)-Mediated Synthesis of α-Aminophosphonates under Mild Conditions. Synthesis 2016, 48, 4489–4494. DOI:10.1055/s-0036-1588065.
  • Hou, J. T.; Gao, J. W.; Zhang, Z. H. NbCl5: An Efficient Catalyst for One-Pot Synthesis of α-Aminophosphonates under Solvent-Free Conditions. Appl. Organometal. Chem. 2011, 25, 47–53. DOI:10.1002/aoc.1687.
  • Varalakshmi, M.; Srinivasulu, D.; Rajasekhar, D.; Raju, C. N.; Sreevani, S. CeCl3·7H2O Catalyzed, Microwave-Assisted High-Yield Synthesis of α-Aminophosphonates and Their Biological Studies. Phosphorus, Sulfur Silicon Relat. Elem. 2014, 189, 106–112. DOI:10.1080/10426507.2013.798785.
  • Li, X. C.; Gong, S. S.; Zeng, D. Y.; You, Y. H.; Sun, Q. Highly Efficient Synthesis of α-Aminophosphonates Catalyzed by Hafnium(IV) Chloride. Tetrahedron Lett. 2016, 57, 1782–1785. DOI:10.1016/j.tetlet.2016.03.033.
  • Ha, H. J.; Nam, G. S. An Efficient Synthesis of Anilinobenzylphosphonates. Synth. Commun. 1992, 22, 1143–1148. DOI:10.1080/00397919208021098.
  • Ambica; Kumar, S.; Taneja, S. C.; Hundal, M. S.; Kapoor, K. K. One-Pot Synthesis of α-Aminophosphonates Catalyzed by Antimony Trichloride Adsorbed on Alumina. Tetrahedron Lett. 2008, 49, 2208–2212. DOI:10.1016/j.tetlet.2008.02.047.
  • Zhang, Y.; Zhu, C. J. Gold Complex-Catalyzed C–P Bond Formation by Kabachnik-Fields Reactions. Catal. Commun. 2012, 28, 134–137. DOI:10.1016/j.catcom.2012.08.001.
  • Ravinder, K.; Reddy, A. V.; Krishnaiah, P.; Venkataramana, G.; Reddy, V. L. N.; Venkateswarlu, Y. CAN Catalyzed One-Pot Synthesis of α-Amino Phosphonates from Carbonyl Compounds. Synth. Commun. 2004, 34, 1677–1683.
  • Saberi, D.; Cheraghi, S.; Mahdudi, S.; Akbari, J.; Heydari, A. Dehydroascorbic Acid (DHAA) Capped Magnetite Nanoparticles as an Efficient Magnetic Organocatalyst for the One-Pot Synthesis of α-Aminonitriles and α-Aminophosphonates. Tetrahedron Lett. 2013, 54, 6403–6406. DOI:10.1016/j.tetlet.2013.09.032.
  • Ghafuri, H.; Rashidizadeh, A.; Zand, H. R. E. Highly Efficient Solvent Free Synthesis of α-Aminophosphonates Catalyzed by Recyclable Nano-Magnetic Sulfated Zirconia (Fe3O4@ZrO2/SO42-). RSC Adv. 2016, 6, 16046–16054. DOI:10.1039/c5ra13173a.
  • Reddy, P. S.; Reddy, P. V. G.; Reddy, S. M. Phosphomolybdic Acid Promoted Kabachnik-Fields Reaction: An Efficient One-Pot Synthesis of α-Aminophosphonates from 2-Cyclopropylpyrimidine-4-Carbaldehyde. Tetrahedron Lett. 2014, 55, 3336–3339. DOI:10.1016/j.tetlet.2014.04.053.
  • Mulla, S. A. R.; Pathan, M. Y.; Chavan, S. S.; Gample, S. P.; Sarkar, D. Highly Efficient One-Pot Multi-Component Synthesis of α-Aminophosphonates and Bis-Alpha-Aminophosphonates Catalyzed by Heterogeneous Reusable Silica Supported Dodecatungstophosphoric Acid (DTP/SiO2) at Ambient Temperature and Their Antitubercular Evaluation against Mycobactrium Tuberculosis. RSC Adv. 2014, 4, 7666–7672. DOI:10.1039/c3ra45853a.
  • Sun, G. Y.; Hou, J. T.; Dou, J. J.; Lu, J.; Hou, Y. J.; Xue, T.; Zhang, Z. H. Xanthan Sulfuric Acid as an Efficient Biodegradable and Recyclable Catalyst for the One-Pot Synthesis of α-Amino Phosphonates. J. Chin. Chem. Soc. 2010, 57, 1315–1320. DOI:10.1002/jccs.201000194.
  • Khatri, C. K.; Satalkar, V. B.; Chaturbhuj, G. U. Ulfated Polyborate Catalyzed Kabachnik-Fields Reaction: An Efficient and Eco-Friendly Protocol for Synthesis of α-Amino Phosphonates. Tetrahedron Lett. 2017, 58, 694–698. DOI:10.1016/j.tetlet.2017.01.022.
  • Milen, M.; Abranyi-Balogh, P.; Dancso, A.; Frigyes, D.; Pongo, L.; Keglevich, G. T3P®-Promoted Kabachnik-Fields Reaction: An Efficient Synthesis of α-Aminophosphonates. Tetrahedron Lett. 2013, 54, 5430–5433. DOI:10.1016/j.tetlet.2013.07.145.
  • Hosseini-Sarvari, M. TiO2 as a New and Reusable Catalyst for One-Pot Three-Component Syntheses of α-Aminophosphonates in Solvent-Free Conditions. Tetrahedron 2008, 64, 5459–5466. DOI:10.1016/j.tet.2008.04.016.
  • Zhang, M.; Han, Y.; Niu, J. L.; Zhang, Z. H. A General and Practical Approach for the Synthesis of 1,2,4-Trioxanes Catalyzed by Silica-Ferric Chloride. Adv. Synth. Catal. 2017, 359, 3618–3625. DOI:10.1002/adsc.201700671.
  • Zhang, H. Y.; Hao, X. P.; Mo, L. P.; Liu, S. S.; Zhang, W. B.; Zhang, Z. H. A Magnetic Metal-Organic Framework as a Highly Active Heterogeneous Catalyst for One-Pot Synthesis of 2-Substituted Alkyl and Aryl(indolyl)Kojic Acid Derivatives. New J. Chem. 2017, 41, 7108–7115. DOI:10.1039/c7nj01592e.
  • Ma, C. T.; Wang, J. J.; Zhao, A. D.; Wang, Q. L.; Zhang, Z. H. Magnetic Copper Ferrite Catalyzed Homo- and Cross-Coupling Reaction of Terminal Alkynes under Ambient Atmosphere. Appl. Organometal. Chem. 2017, 31, e3888. DOI:10.1002/aoc.3888.
  • Guo, R. Y.; Wang, P.; Wang, G. D.; Mo, L. P.; Zhang, Z. H. One-Pot Three-Component Synthesis of Functionalized Spirooxindoles in Gluconic Acid Aqueous Solution. Tetrahedron 2013, 69, 2056–2061. DOI:10.1016/j.tet.2012.12.081.
  • Han, Y.; Zhang, M.; Zhang, Y.-Q.; Zhang, Z.-H. Copper Immobilized at Covalent Organic Framework: An Efficient and Recyclable Heterogeneous Catalyst for Chan − Lam Coupling Reaction of Aryl Boronic Acids and Amines. Green Chem. 2018, 21, 4891–4900. DOI:10.1039/C8GC02611D.
  • Ramakrishna, K.; Thomas, J. M.; Sivasankar, C. A Green Approach to the Synthesis of α-Amino Phosphonate in Water Medium: Carbene Insertion into the n–h Bond by Cu(I) Catalyst. J. Org. Chem. 2016, 81, 9826–9835. DOI:10.1021/acs.joc.6b01940.
  • Jia, X.; Liu, X.; Yuan, Y.; Li, P.; Hou, W.; He, K. Radical Cation Salt-Initiated Aerobic C − H Phosphorylation of N-Benzylanilines: Synthesis of α-Aminophosphonates. Chem. Asian J. 2018, 13, 1911–1914. DOI:10.1002/asia.201800584.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.