547
Views
13
CrossRef citations to date
0
Altmetric
Reviews

α-Hydroxyphosphonates as versatile starting materials

Pages 425-437 | Received 28 Sep 2018, Accepted 31 Oct 2018, Published online: 15 Apr 2019

References

  • Patel, D. V.; Rielly-Gauvin, K.; Ryono, D. E.; Free, C. A.; Rogers, W. L.; Smith, S. A.; DeForrest, J. M.; Oehl, R. S.; Petrillo, E. W. Alpha-Hydroxy Phosphinyl-Based Inhibitors of Human Renin. J. Med. Chem. 1995, 38, 4557–4569.
  • Song, H.; Mao, H.; Shi, D. Synthesis and Herbicidal Activity of α-Hydroxy Phosphonate Derivatives Containing Pyrimidine Moiety. Chin. J. Chem. 2010, 28, 2020–2024.
  • Pokalwar, R. U.; Hangarge, R. V.; Maske, P. V.; Shingare, M. S. Synthesis and Antibacterial Activities of α-Hydroxyphosphonates and α-Acetyloxyphosphonates Derived from 2-Chloroquinoline-3-Carbaldehyde. Arkivoc. 2006, 11, 196–204.
  • Reddy, G. S.; Sundar, C. S.; Prasad, S. S.; Dadapeer, E.; Reddy, C. N. R. A. C. S. Synthesis, Spectral Characterization and Antimicrobial Activity of α-Hydroxyphosphonates. Pharma Chem. 2012, 4, 2208–2213.
  • Kalla, R. M. N.; Lee, H. R.; Cao, J.; Yoo, J.-W.; Kim, I. Phospho Sulfonic Acid: An Efficient and Recyclable Solid Acid Catalyst for the Solvent-Free Synthesis of α-Hydroxyphosphonates and Their Anticancer Properties. New J. Chem. 2015, 39, 3916–3922.
  • Naidu, K. R. M.; Kumar, K. S.; Arulselvan, P.; Reddy, C. B.; Lasekan, O. Synthesis of α-Hydroxyphosphonates and Their Antioxidant Properties. Arch. Pharm. Pharm. Med. Chem. 2012, 345, 957–963.
  • Rádai, Z.; Keglevich, G.; Rádai, Z.; Keglevich, G. Synthesis and Reactions of α-Hydroxyphosphonates. Molecules. 2018, 23, 1493–1521.
  • Demkowicz, S.; Rachon, J.; Daśko, M.; Kozak, W. Selected Organophosphorus Compounds with Biological Activity. Applications in Medicine. RSC Adv. 2016, 6, 7101–7112.
  • Kafarski, P.; Lejczak, B. Aminophosphonic Acids of Potential Medical Importance. Curr. Med. Chem. Anticancer. Agents. 2001, 1, 301–312.
  • Shen, G.; Zhu, J.; Simpson, A. M.; Pei, D. Design and Synthesis of Macrocyclic Peptidyl Hydroxamates as Peptide Deformylase Inhibitors. Bioorg. Med. Chem. Lett. 2008, 18, 3060–3063.
  • Bird, J.; De Mello, R. C.; Harper, G. P.; Hunter, D. J.; Karran, E. H.; Markwell, R. E.; Miles-Williams, A. J.; Rahman, S. S.; Ward, R. W. Synthesis of Novel N-Phosphonoalkyl Dipeptide Inhibitors of Human Collagenase. J. Med. Chem. 1994, 37, 158–169.
  • Mucha, A.; Kafarski, P.; Berlicki, Ł. Remarkable Potential of the α-Aminophosphonate/Phosphinate Structural Motif in Medicinal Chemistry. J. Med. Chem. 2011, 54, 5955–5980.
  • Ren, Z. L.; Zhang, J.; Li, H.; Chu, M. J.; Zhang, L. S.; Yao, X. K.; Xia, Y.; Lv, X. H.; Cao, H. Q. Design, Synthesis and Biological Evaluation of α-Aminophosphonate Derivatives Containing a Pyrazole Moiety. Chem. Pharm. Bull. 2016, 64, 1755–1762.
  • Ntai, I.; Bachmann, B. O. Identification of ACE Pharmacophore in the Phosphonopeptide Metabolite K-26. Bioorg. Med. Chem. Lett. 2008, 18, 3068–3071.
  • Long, N.; Cai, X. J.; Song, B. A.; Yang, S.; Chen, Z.; Bhadury, P. S.; Hu, D. Y.; Jin, L. H.; Xue, W. Synthesis and Antiviral Activities of Cyanoacrylate Derivatives Containing an α-Aminophosphonate Moiety. J. Agric. Food Chem. 2008, 56, 5242–5246.
  • Huang, X. C.; Wang, M.; Pan, Y. M.; Tian, X. Y.; Wang, H. S.; Zhang, Y. Synthesis and Antitumor Activities of Novel α-Aminophosphonates Dehydroabietic Acid Derivatives. Bioorg. Med. Chem. Lett. 2013, 23, 5283–5289.
  • Dimukhametov, M. N.; Bayandina, E. V.; Davydova, E. Y.; Gubaidullin, A. T.; Litvinov, I. A.; Alfonsov, V. A. A Stereochemical Approach to the Kabachnik–Fields Reaction Mechanism. Mendeleev Commun. 2003, 13, 150–151.
  • Kaboudin, B.; Zahedi, H. Calcium Chloride as an Efficient Lewis Base Catalyst for the One-Pot Synthesis of α-Aminophosphonic Esters. Chem. Lett. 2008, 37, 540–541.
  • Zefirov, N. S.; Matveeva, E. D. Catalytic Kabachnik–Fields Reaction: New Horizons for Old Reaction. Arkivoc. 2008, 2008, 1–17.
  • Kaboudin, B. A Convenient Synthesis of 1-Aminophosphonates from 1-Hydroxyphosphonates. Tetrahedron Lett. 2003, 44, 1051–1053.
  • Zsuzsa Kiss, N.; Kaszás, A.; Drahos, L.; Mucsi, Z.; Keglevich, G. A Neighbouring Group Effect Leading to Enhanced Nucleophilic Substitution of Amines at the Hindered α-Carbon Atom of an α-Hydroxyphosphonate. Tetrahedron Lett. 2012, 53, 207–209.
  • Kiss, N. Z.; Rádai, Z.; Mucsi, Z.; Keglevich, G. Synthesis of α‐Aminophosphonates from α‐Hydroxyphosphonates; A Theoretical Study. Heteroatom Chem. 2016, 27, 260–268.
  • Hudson, H. R.; Wardle, N. J.; Bligh, S. W. A.; Greiner, I.; Grün, A.; Keglevich, G. N-Heterocyclic Dronic Acids: Applications and Synthesis. Mini Rev. Med. Chem. 2012, 12, 313–325.
  • Beers, S. A.; Malloy, E. A.; Wu, W.; Wachter, M. P.; Gunnia, U.; Cavender, D.; Harris, C.; Davis, J.; Brosius, R.; Pellegrino-Gensey, J. L.; Siekierka, J. Nitroarylhydroxymethylphosphonic Acids as Inhibitors of CD45. Bioorg. Med. Chem. 1997, 5, 2203–2211.
  • Frechette, R. F.; Ackerman, C.; Beers, S.; Look, R.; Moore, J. Novel Hydroxyphosphonate Inhibitors of CD-45 Tyrosine Phosphatase. Bioorg. Med. Chem. Lett. 1997, 7, 2169–2172.
  • Ganzhorn, A. J.; Hoflack, J.; Pelton, P. D.; Strasser, F.; Chanal, M. C.; Piettre, S. R. Inhibition of Myo-Inositol Monophosphatase Isoforms by Aromatic Phosphonates. Bioorg. Med. Chem. 1998, 6, 1865–1874.
  • Forlani, G.; Occhipinti, A.; Berlicki, Ł.; Dziedzioła, G.; Wieczorek, A.; Kafarski, P. Tailoring the Structure of Aminobisphosphonates to Target Plant P5C Reductase. J. Agric. Food Chem. 2008, 56, 3193–3199.
  • Auberson, Y. P.; Allgeier, H.; Bischoff, S.; Lingenhoehl, K.; Moretti, R.; Schmutz, M. 5-Phosphonomethylquinoxalinediones as Competitive NMDA Receptor Antagonists with a Preference for the Human 1A/2A, Rather than 1A/2B Receptor Composition. Bioorg. Med. Chem. Lett 2002, 12, 1099–1102.
  • Caplan, N. A.; Pogson, C. I.; Hayes, D. J.; Blackburn, G. M. The Synthesis of Novel Bisphosphonates as Inhibitors of Phosphoglycerate Kinase (3-PGK). J. Chem. Soc, Perkin Trans. 1 2000, 0, 421–437.
  • Yuan, C.; Wang, G.; Feng, H.; Chen, J.; Maier, L. Studies on Organophosphorus Compounds LXXVI. a Convenient Synthesis of 1-Alkyl-or 1-Aryl-1-Hydroxy-2-N-Hydroxylaminoethylphosphonic Acids. Phosphorus Sulfur Silicon Relat. Elem. 1993, 81, 149–154.
  • Colton, I. J.; Yin, D. T.; Grochulski, P.; Kazlauskas, R. J. Molecular Basis of Chiral Acid Recognition by Candida Rugosa Lipase: X-Ray Structure of Transition State Analog and Modeling of the Hydrolysis of Methyl 2-Methoxy-2-Phenylacetate. Adv. Synth. Catal. 2011, 353, 2529–2544.
  • McGeary, R. P.; Vella, P.; Mak, J. Y. W.; Guddat, L. W.; Schenk, G. Inhibition of Purple Acid Phosphatase with Alpha-Alkoxynaphthylmethylphosphonic Acids. Bioorg. Med. Chem. Lett. 2009, 19, 163–166.
  • Tulsi, N. S.; Downey, A. M.; Cairo, C. W. A Protected L-Bromophosphonomethylphenylalanine Amino Acid Derivative (BrPmp) for Synthesis of Irreversible Protein Tyrosine Phosphatase Inhibitors. Bioorg. Med. Chem. 2010, 18, 8679–8686.
  • Rádai, Z.; Szeles, P.; Kiss, N. Z.; Hegedűs, L.; Windt, T.; Nagy, V.; Keglevich, G. Green Synthesis and Cytotoxic Activity of Dibenzyl α-Hydroxyphosphonates and α-Hydroxyphosphonic Acids. Heteroat. Chem. 2018, 29, e21436.
  • Chen, X. B.; Shi, D. Q. Synthesis and Biological Activity of Novel Phosphonate Derivatives Containing of Pyridyl and 1,2,3-Triazole Rings. Phosphorus Sulfur Silicon Relat. Elem. 2008, 183, 1134–1144.
  • Soung, M. G.; Kim, J. H.; Kwon, B. M.; Sung, N. D. Synthesis and Ligand Based 3D-QSAR of 2,3-Bis-Benzylidenesuccinaldehyde Derivatives as New Class Potent FPTase Inhibitor, and Prediction of Active Molecules. Bull. Korean Chem. Soc. 2010, 31, 1355–1360.
  • Jin, C.; He, H. Synthesis and Herbicidal Activity of Novel Dialkoxyphosphoryl Aryl Methyl 2-(4,6-Dimethoxypyrimidin-2-Yloxy) Benzoate Derivatives. Phosphorus Sulfur Silicon Relat. Elem. 2011, 186, 1397–1403.
  • Wang, W.; Wang, L. P.; Ning, B. K.; Mao, M. Z.; Xue, C.; Wang, H. Y. Synthesis and Insecticidal Activities of O,O-Dialkyl-2-[3-Bromo-1-(3-Chloropyridin-2-yl)-1H-Pyrazole-5-Carbonyloxy] (Aryl) Methylphosphonates. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 1362–1367.
  • Yang, J.; Ma, J.; Che, W.; Li, M.; Li, G.; Song, B. Microwave-Assisted Synthesis and Antitumor Activity of Salicyl Acyloxy Phosphonate Derivatives. Chin. J. Org. Chem. 2014, 34, 2566–2571.
  • Wang, T.; Wang, W.; Peng, H.; He, H. Synthesis and Herbicidal Activities of Potassium Methyl 1-(Substituted Phenoxyacetoxy) Alkylphosphonate. Chem. Res. Chin. Univ. 2013, 29, 690–694.
  • Wang, W.; Zhou, Y.; Peng, H.; He, H.-W.; Lu, X. T. Synthesis and Herbicidal Activity of α-[(Substituted Phenoxybutyryloxy or Valeryoxy)]Alkylphosphonates and 2-(Substituted Phenoxybutyryloxy)Alkyl-5,5-Dimethyl-1,3,2-Dioxaphosphinan-2-One Containing Fluorine. J. Fluor. Chem. 2017, 193, 8–16.
  • Sharghi, H.; Jokar, M.; Doroodmand, M. M. Iron-Doped Single-Walled Carbon Nanotubes as New Heterogeneous and Highly Efficient Catalyst for Acylation of Alcohols, Phenols, Carboxylic Acids and Amines under Solvent-Free Conditions. Adv. Synth. Catal. 2011, 353, 426–442.
  • Abdou, W. M.; Bekheit, M. S. One-Pot Three-Component Synthesis of Peptidomimics for Investigation of Antibacterial and Antineoplastic Properties. Arab. J. Chem. 2015. doi: 10.1016/j.arabjc.2015.04.014
  • Fang, H.; Wang, D.; Chen, W.; Zhao, Y.; Fang, M. Synthesis, Crystal Structure and Fragmentation Pathway of Arylcarboxy Ester of α-Hydroxyphosphonate. Chin. J. Org. Chem. 2010, 30, 1377–1382.
  • Pàmies, O.; Bäckvall, J. E. An Efficient Route to Chiral alpha- and beta-hydroxyalkanephosphonates. J. Org. Chem. 2003, 68, 4815–4818.
  • Lassaux, P.; Hamel, M.; Gulea, M.; Delbrück, H.; Mercuri, P. S.; Horsfall, L.; Dehareng, D.; Kupper, M.; Frère, J. M.; Hoffmann, K.; Galleni, M. Bebrone C. Mercaptophosphonate Compounds as Broad-Spectrum Inhibitors of the Metallo-Beta-Lactamases. J. Med. Chem. 2010, 53, 4862–4876.
  • Dimukhametov, M. N.; Bayandina, E. V.; Litvinov, I. A.; Al’fonsov, V. A. Synthesis of Stereoisomeric d,l and Meso Forms of O,O’-Bis-(O,O’-Dialkyl 1-Phosphorylbenzyl)Phenylphosphonites and -Thionophosphonates Containing a Pseudochiral Center and Determination of Their Configurations by NMR Spectroscopy. Russ. Chem. Bull. 2001, 50, 287–291.
  • Ruel, R.; Bouvier, J. P.; Young, R. N. Single-Step Preparation of 1-Hydroxybisphosphonates via Addition of Dialkyl Phosphite Potassium Anions to Acid Chlorides. J. Org. Chem. 1995, 60, 5209–5213.
  • Grün, A.; Molnár, I. G.; Bertók, B.; Greiner, I.; Keglevich, G. Synthesis of α-Hydroxy-Methylenebisphosphonates by the Microwave-Assisted Reaction of α-Oxophosphonates and Dialkyl Phosphites under Solventless Conditions. Heteroat. Chem. 2009, 20, 350–354.
  • Keglevich, G.; Grün, A.; Molnár, I. G.; Greiner, I. Phenyl-, Benzyl-, and Unsymmetrical Hydroxy-Methylenebisphosphonates as Dronic Acid Ester Analogues from α-Oxophosphonates by Microwave-Assisted Syntheses. Heteroatom Chem. 2011, 22, 640–648.
  • Rádai, Z.; Hodula, V.; Kiss, N. Z.; Kóti, J.; Keglevich, G. Synthesis of 1-Phosphinoyloxyphosphonates and 1-Phosphoryloxy-Phosphonates by the Phosphinoylation/Phosphorylation of 1-Hydroxy-1-Arylmethylphosphonates. Unpublished results.
  • Jung, M. E.; Cordova, J.; Murakami, M. Total Synthesis of (±)-Kellermanoldione: Stepwise Cycloaddition of a Functionalized Diene and Allenoate. Org. Lett. 2009, 11, 3882–3885.
  • Zeuner, F.; Moszner, N.; Völkel, T.; Vogel, K.; Rheinberger, V. Synthesis and Dental Aspects of Acrylic Phosphoric and Phosphonic Acids. Phosphorus Sulfur Silicon Relat. Elem. 1999, 144, 133–136.
  • Kerim, M. D.; Cattoen, M.; Fincias, N.; Santos, A. D.; Arseniyadis, S.; El Kaïm, L. Palladium‐Catalysed O‐Allylation of α‐Hydroxyphosphonates: An Expedient Entry into Phosphono‐Oxaheterocycles. Adv. Synth. Catal. 2018, 360, 449–545.
  • Swamy, K. C. K.; Kumar, K. V. P. P.; Suresh, R. R.; Kumar, N. S. Easy and Stereoselective Synthesis of Cyclopropyl-Substituted Phosphonates via α-Chlorophosphonates. Synthesis. 2007, 2007, 1485–1490.
  • Kondo, K.; Fujitani, T.; Ohnishi, N. Synthesis and Non-Linear Properties of Disubstituted Diphenylacetylene and Related Compounds. J. Mater. Chem. 1997, 7, 429–433.
  • Tsai, H. J.; Lin, K. W.; Ting, T.; Burton, D. J. A General and Efficient Route for the Preparation of Phenyl-Substituted Vinyl Fluorides. Helv. Chim. Acta. 1999, 82, 2231–2239.
  • Guzyr, O. I.; Zasukha, S. V.; Vlasenko, Y. G.; Chernega, A. N.; Rozhenko, A. B.; Shermolovich, Y. G. Simple Route to Adducts of (Amino)(Aryl)Carbene with Phosphorus Pentafluoride. 2013, 2013, 4154–4158.
  • Kaźmierczak, M.; Kubicki, M.; Koroniak, H. Regioselective Fluorination of α-Hydroxy-β-Aminophosphonates by Using PyFluor. Eur. J. Org. Chem. 2018, 2018, 3844–3852.
  • Wu, D.; He, Y.; Tang, R.; Guan, Z. The First Synthesis of Diethyl α,α-Chlorofluorobenzylphosphonates. Synlett. 2009, 2009, 2180–2182.
  • Yang, Q.; Li, C.; Cheng, M. X.; Yang, S. D. Palladium-Catalyzed Migratory Insertion of Isocyanides for Synthesis of C-Phosphonoketenimines. ACS Catal. 2016, 6, 4715–4719.
  • Firouzabadi, H.; Iranpoor, N.; Sobhani, S. Preparation of α-Ketophosphonates by Oxidation of α-Hydroxyphosphonates with Neutral Alumina Supported Potassium Permanganate (NASPP) under Solvent-Free Conditions and Potassium Permanganate in Dry Benzene. Tetrahedron Lett. 2002, 43, 477–480.
  • Kaboudin, B. Surface-Mediated Solid-Phase Reactions: The Preparation of Acyl Phosphonates by Oxidation of 1-Hydroxyphosphonates on the Solid Surface. Tetrahedron Lett. 2000, 41, 3169–3171.
  • Kaboudin, B.; Nazari, R. A Convenient and Mild Procedure for the Preparation of α-Keto Phosphonates of 1-Hydroxyphosphonates under Solvent-Free Conditions Using Microwave. Synth. Commun. 2001, 31, 2245–2250.
  • Firouzabadi, H.; Iranpoor, N.; Sobhani, S.; Sardarian, A. R. High Yield Preparation of α-Ketophosphonates by Oxidation of α-Hydroxyphosphonates with Zinc Dichromate Trihydrate (ZnCr2O7·3H2O) under Solvent-Free Conditions. Tetrahedron Lett. 2001, 42, 4369–4371.
  • Bhattacharya, T.; Majumdar, B.; Sarma, T. K. Compositional Effect in AuPd Bimetallic Nanoparticles towards Product Selectivity during Aerobic Oxidation of α-Hydroxy Esters and Phosphonates. Chem. Select. 2016, 1, 5265–5269.
  • Nakazawa, H.; Matsuoka, Y.; Nakagawa, I.; Miyoshi, K. Palladium Catalyzed Carbon-Phosphorus Bond Activation: Decarbonylation Reaction of α-Ketophosphonates. Phosphorus Sulfur Silicon Relat. Elem. 1993, 77, 13–16.
  • Sprecher, M.; Nativ, E. The Baeyer–Villiger Oxidation of Dialkyl Aroylphosphonates. Tetrahedron Lett. 1968, 9, 4405–4408.
  • Bausch, C. C.; Johnson, J. S. Cyanide-Catalyzed Additions of Acyl Phosphonates to Aldehydes: A New Acyl Donor for Benzoin-Type Reactions. Adv. Synth. Catal. 2005, 347, 1207–1211.
  • Sampak, S.; Zhao, C. G. Organocatalyzed Nitroaldol Reaction of α-Ketophosphonates and Nitromethane Revisited. Arkivoc. 2007, 218–226.
  • Sobhani, S.; Tashrifi, Z. Synthesis of α-Functionalized Phosphonates from α-Hydroxyphosphonates. Tetrahedron 2010, 66, 1429–1439.
  • Tokuyama, H.; Watanabe, M.; Hayashi, Y.; Kurokawa, T.; Peng, G.; Fukuyama, T. A Novel Protocol for Construction of Indolylmethyl Group at Aldehydes or Ketones. Synlett. 2001, 2001, 1403–1406.
  • Aydemir, M.; Haykır, G.; Battal, A.; Jankus, V.; Sugunan, S. K.; Dias, F. B.; Al-Attar, H.; Türksoy, F.; Tavaslı, M.; Monkman, A. P. High Efficiency OLEDs Based on Anthracene Derivatives: The Impact of Electron Donating and Withdrawing Group on the Performance of OLED. Org. Electron. 2016, 30, 149–157.
  • Cao, D. K.; Lu, Y. H.; Zheng, T.; Zhang, Y. H.; Li, Y. Z.; Zheng, L. M. Reaction of an Anthracene-Based Cyclic Phosphonate Ester with Trimethylsilyl Bromide Unexpectedly Generating Two Phosphonates: Syntheses, Crystal Structures and Fluorescent Properties. RSC Adv. 2013, 3, 4001–4007.
  • Hall, L. A. R.; Stephens, C. W.; Drysdale, J. J. A Rearrangement to Form Diethyl 1-Cyanoethyl Phosphate. J. Am. Chem. Soc. 1957, 79, 1768–1769.
  • Pallitsch, K.; Roller, A.; Hammerschmidt, F. The Stereochemical Course of the α-Hydroxyphosphonate–Phosphate Rearrangement. Chem. Eur. J. 2015, 21, 10200–10206.
  • Jankowski, S.; Marczak, J.; Olczak, A.; Główka, M. L. Stereochemistry of 1-Hydroxyphosphonate–Phosphate Rearrangement. Reten. Config. Phosphorus Atom 2006, 47, 3341–3344.
  • Kumaraswamy, S.; Selvi, R. S.; Swamy, K. C. K. Synthesis of New α-Hydroxy-, α-Halogeno- and Vinylphosphonates Derived from 5,5-Dimethyl-1,3,2-Dioxaphosphinan-2-One. Synthesis 1997, 1997, 207–212.
  • Yoshino, K.; Kohno, T.; Morita, T.; Tsukamoto, G. Organic Phosphorus Compounds. 2. Synthesis and Coronary Vasodilator Activity of (Benzothiazolylbenzyl)Phosphonate Derivatives. J. Med. Chem. 1989, 32, 1528–1532.
  • Cytlak, T.; Skibińska, M.; Kaczmarek, P.; Kaźmierczak, M.; Rapp, M.; Kubicki, M.; Koroniak, H. Functionalization of α-Hydroxyphosphonates as a Convenient Route to N-Tosyl-α-Aminophosphonates. RSC Adv. 2018, 8, 11957–11974.
  • Kaïm, L. E.; Gaultier, L.; Grimaud, L.; Santos, A. D. Formation of New Phosphates from Aldehydes by a DBU-Catalysed Phospha-Brook Rearrangement in a Polar Solvent. Synlett. 2005, 2005, 2335–2336.
  • Galeta, J.; Potáček, M. Applications of Caged-Designed Proton Sponges in Base-Catalyzed Transformations. J. Mol. Catal. Chem. 2014, 395, 87–92.
  • Pallikonda, G.; Santosh, R.; Ghosal, S.; Chakravarty, M. BuLi-Triggered Phospha-Brook Rearrangement: Efficient Synthesis of Organophosphates from Ketones and Aldehydes. Tetrahedron Lett. 2015, 46, no–3798.
  • Hayashi, M.; Nakamura, S. Catalytic Enantioselective Protonation of α-Oxygenated Ester Enolates Prepared through Phospha-Brook Rearrangement. Angew. Chem. Int. Ed. 2011, 50, 2249–2252.
  • Kondoh, A.; Terada, M. Brønsted Base Catalyzed [2,3]-Wittig/Phospha-Brook Tandem Rearrangement Sequence. Org. Lett. 2013, 15, 4568–4571.
  • Rádai, Z.; Szabó, R.; Kiss, N. Z.; Keglevich, G. Unpublished results.
  • Yuan, Q.; He, P.; Yuan, C. Studies on Organophosphorus Compounds 102. A Convenient Stereospecific Synthesis of Dialkyl 1-Alkyl(Aryl)-2-Nitroeth-1-Enylphosphonates. Phosphorus Sulfur Silicon Relat. Elem. 1997, 127, 113–121.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.