337
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Polyethylene glycol (PEG-400): An efficient one-pot green synthesis and anti-viral activity of novel α-diaminophosphonates

, , , ORCID Icon & ORCID Icon
Pages 1035-1039 | Received 24 Jan 2019, Accepted 10 Mar 2019, Published online: 13 Apr 2019

References

  • Moonen, K.; Laureyn, I.; Stevens, C. V. Synthetic Methods of Azaheterocyclic Phosphonates and Their Biological Activity. Chem. Rev. 2004, 104, 6177–6215. DOI: 10.1021/cr030451c.
  • Bartlett, P. A.; Hanson, J. E.; Giannousis, P. P. Potent Inhibition of Pepsin and Penicillopepsin by Phosphorus-Containing Peptide Analogues. J. Org. Chem. 1990, 55, 6268–6274. DOI: 10.1021/jo00313a012.
  • Lejczak, B.; Kafarski, P.; Zygmunt, J. Inhibition of Aminopetidases by Aminophosphonates. Biochemistry 1989, 28, 3549–3555. DOI: 10.1021/bi00434a060.
  • Maier, L.; Spörri, H. Organic Phosphorus Compounds 96. Resolution of 1-Amino-2-(4- Fluorophenyl)Ethylphosphonic Acid as Well as Some di- and Tripeptides. Phosphorus, Sulfur Silicon Relat. Elem. 1991, 61, 69–75. DOI: 10.1080/10426509108027339.
  • Natchev, I. A. Synthesis, Enzyme-Substrate Interaction, and Herbicidal Activity of Phosphoryl Analogues of Glycine. Liebigs Ann. Chem. 1988, 9, 861–867. DOI: 10.1002/jlac.198819880908.
  • Fest, C.; Schmidt, K. J. The Chemistry of Organophosphorus Pesticides; Springer-Verlag: Berlin. 1982, vol. 12.
  • Kafarski, P.; Lejczak, B. Aminophosphonic Acids of Potential Medicinal Importance. Curr. Med. Cmcaca. 2001, 1, 301–302. DOI: 10.2174/1568011013354543.
  • Allen, M. C.; Fuhrer, W.; Tuck, B.; Wade, R.; Wood, J. M. Renin Inhibitors: Synthesis of Transition-State Analogue Inhibitors Containing Phosphorus Acid Derivatives at the Scissile Bond. J. Med. Chem. 1989, 32, 1652–1661. DOI: 10.1021/jm00127a041.
  • Kafarski, P.; Lejczak, B. Biological Activity of Aminophosphonic Acids. Phosphorus, Sulfur Silicon Relat. Elem. 1991, 63, 193–215. DOI: 10.1080/10426509108029443.
  • Miller, D. J.; Hammond, S. M.; Anderluzzi, D.; Bugg, T. D. H. Aminoalkylphosphinate Inhibitors of D-Ala-D-Ala Adding Enzyme. J. Chem. Soc., Perkin Trans. 1 1998, 1, 131–142. DOI: 10.1039/a704097k.
  • Bhatia, M. S.; Pawanjit, P. Phosphorus-Containing Heterocycles as Fungicides: Synthesis of 2,2′-Diphenylene Chlorophosphonate and 2, 2′-Diphenylenechlorothiophosphonate. Experientia 1976, 32, 1111. DOI: 10.1007/BF01927572.
  • (a) Oleksyszyn, J.; Powers, J. C. Irreversible Inhibition of Serine Proteases by Peptide Derivatives of (α-aminoalkyl)Phosphonate Diphenyl Esters. Biochemistry 1991, 30, 485–493. DOI: 10.1021/bi00216a026. (b) Green, D.; Patel, G.; Elgendy, S.; Baban, J. A.; Claeson, G.; Kakkar, V. V.; Deadman, J. The Facile Synthesis of O, O-Dialkyl 1-Aminoalkanephosphonates. Tetrahedron Lett. 1993, 34, 6197–6920. DOI: 10.1016/S0040-4039(00)91830-6.
  • (a) Hou, J. T.; Gao, J. W.; Zhang, Z. H. NbCl5: An Efficient Catalyst for One-Pot Synthesis of α-Aminophosphonates under Solvent-Free Conditions. Appl. Organomet. Chem. 2010, 25, 47–53. DOI: 10.1002/aoc.1687. (b) Sun, G. Y.; Hou, J. T.; Dou, J. J.; Lu, J.; Xue, T.; Zhang, Z. H. Xanthan Sulfuric Acid as an Efficient Biodegradable and Recyclable Catalyst for the One-Pot Synthesis of α-Aminophosphonates. J. Chin. Chem. Soc. 2010, 57, 1315–1320. DOI: 10.1002/jccs.201000194. (c) Mohammadiyan, E.; Ghafuri, H.; Kakanejadifard, A. A New Procedure for Synthesis of α-Aminophosphonates by Aqueous Formic Acid as an Effective and Environment-Friendly Organocatalyst. J. Chem. Sci. 2017, 129, 1883–1891. DOI: 10.1007/s12039-017-1394-z. (d) Yu, Y. Q.; Xu, D. Z. A Simple and Green Procedure for the One-Pot Synthesis of α-aminophosphonates. Synthesis. 2015, 47, 1869–1876. DOI: 10.1055/s-0034-1380523.
  • Chandrasekhar, S.; Narsihmulu, C. H.; Shameen, S. S.; Saritha, B.; Jayaprakash, S. Solvent and Catalyst Free, Three-Component Coupling of Carbonyl Compounds, Amines and Triethylphosphite: A New Synthesis of α-Aminophosphonates. Synlett 2003, 4, 505–506. DOI: 10.1055/s-2003-.37508.
  • Ranu, B. C.; Hajra, A. A Simple and Green Procedure for the Synthesis of α-Aminophosphonate by a One-Pot Three Component Condensation of Carbonyl Compounds, Amine and Diethyl Phosphate without Solvent and Catalyst. Green Chem. 2002, 4, 551–554. DOI: 10.1039/B205747F.
  • Rezai, Z.; Firouzabadi, H.; Iranpoor, N.; Ghaderi, A.; Jafari, A. A.; Zare, H. R. Design and One-Pot Synthesis of α-Aminophosphonates and Bis(α-Aminophosphonates) by Iron (III) Chloride and Cytotoxicity. Eur. J. Med. Chem. 2009, 44, 4266–4275. DOI: 10.1016/j.ejmech.2009.07.009.
  • Xu, F.; Luo, Y.; Wu, J.; Shen, Q.; Chen, H. Facile One-Pot Synthesis of α-Aminophosphonates Using Lanthanide Chloride as Catalyst. Heteroatom Chem. 2006, 17, 389–392. DOI: 10.1002/hc.20219.
  • Abbas, A. J.; Mahshid, N.; Mohammad, A. D. CeCl3 · 7 H2O Catalyzed One-Pot Kabachnik- Fields Reaction: A Green Protocol for Three-Component Synthesis of α-Aminophosphonates. Heteroat. Chem. 2010, 21, 397–403. DOI: 10.1002/hc.20635.
  • Zhan, Z. P.; Li, J. P. Bismuth (III) Chloride-Catalyzed Three, Component Coupling: Synthesis of α-Aminophosphonates. Synth. Commun. 2005, 35, 2501–2504. DOI: 10.1080/00397910500212692.
  • Ranu, B. C.; Hajra, A.; Jana, U. General Procedure for the Synthesis of α-Amino Phosphonates from Aldehydes and Ketones Using Indium (III) Chloride as a Catalyst. Org. Lett. 1999, 1, 1141–1143. DOI: 10.1021/ol990079g.
  • Azizi, N.; Saidi, M. R. Lithium Perchlorate-Catalyzed Three Component Coupling: A Facile and General Method for the Synthesis of α-Aminophosphonates under Solvent-Free Conditions. Eur. J. Org. Chem. 2003, 23, 4630–4633. DOI: 10.1002/ejoc.200300479.
  • Ghosh, R.; Maiti, S.; Chakraborty, A.; Maiti, D. K. In(OTf)3 Catalyzed Simple One-Pot Synthesis of α-Aminophosphonates. J. Mol. Catal. A 2004, 210, 53–57. DOI: 10.1016/j.molcata.2003.09.020.
  • Maghsoodlou, M. T.; Habibi-Khorassani, S. M.; Heydari, R.; Hazeri, N.; Sajadikhah, S. S.; Rostamizadeh, M. M. Al(H2PO4)3 as an Efficient and Reusable Catalyst for One-Pot Three-Component Synthesis of α-Aminophosphonates under Solvent-Free Conditions. Chin. J. Chem. 2010, 28, 285–288. DOI: 10.1002/cjoc.201090067.
  • Chandrasekhar, S.; Prakash, S. J.; Jagadeshwar, V.; Narsihmulu, C. Three Component Coupling Catalyzed by TaCl5-SiO2: Synthesis of α-Amino Phosphonates. Tetrahedron Lett. 2001, 42, 5561–5563. DOI: 10.1016/S0040-4039(01)01053-X.
  • Bhattacharya, A. K.; Rana, K. C. Amberlite-IR 120 Catalyzed Three-Component Synthesis of α-Amino Phosphonates in One Pot. Tetrahedron Lett. 2008, 49, 2598–2601. DOI: 10.1016/j.tetlet.2008.02.102.
  • Texier-Boullet, F.; Lequitte, M. An Unexpected Reactivity of Simple Heterogeneous Mixture of γ-Alumina and Potassium Fluoride: 1-Hydroxyalkane Phosphonic Esters Synthesis from Non- Activated Ketones in Dry Media. Tetrahedron Lett. 1986, 27, 3515–3516. 4039(00)84837-6. DOI: 10.1016/S0040-.
  • Blazis, V. J.; Koeller, K. J.; Spilling, C. D. Reactions of Phosphorus Acid Diamides: The Asymmetric Synthesis of α-Hydroxy Phosphonamides, Phosphonates and Phosphonic Acids. J. Org. Chem. 1995, 60, 931–940. DOI: 10.1021/jo00109a025.
  • Pamies, O.; Backvall, J. E. An Efficient Route to Chiral α- and β-Hydroxyalkanephosphonates. J. Org. Chem. 2003, 68, 4815–4818. DOI: 10.1021/jo026888m.
  • (a) Shrikhande, J. J.; Gawande, M. B.; Jayaram, R. V. A Catalyst-Free N-Benzyloxy-Carbonylation of Amines in Aqueous Micellar Media at Room Temperature. Tetrahedron Lett. 2008, 49, 4799–4803. DOI: 10.1016/j.tetlet.2008.05.010. (b) Singh, S. J.; Jayaram, R. V. Chemoselective O-tert-Butoxycarbonylation of Hydroxyl Compounds using NaLaTiO4 as a Heterogeneous and Reusable Catalyst. Tetrahedron Lett. 2008, 49, 4249–4251. DOI: 10.1016/j.tetlet.2008.04.149.
  • Sampath, C.; Naga Raju, C.; Venkata Rao, C. Synthesis, Spectral Characterization, Anti- Microbial and Anti-Oxidant Activities of Novel Phosphorylated Derivatives of Amlodipine. Phosphorus, Sulfur, Silicon Relat. Elem. 2015, 190, 11–19. DOI: 10.1080/10426507.2014.909429.
  • Uma Maheswara Rao, K.; Jayaprakash, S. H.; Nayak, S. K.; Suresh Reddy, C. Polyethylene Glycol in Water: A Simple and Environment Friendly Medium for C-P Bond Formation. Cat. Sci. Technol. 2011, 1, 665–1670. DOI: 10.1039/C1CY00295C.
  • Pettersen, D.; Marcolini, M.; Bernardi, L.; Fini, F.; Herrera, P. R.; Sgarzani, V.; Ricci, A. Direct Access to Enantiomerically Enriched α-Aminophosphonic Acid Derivatives by Organocatalytic Asymmetric Hydroxyphosphonylation of Imines. J. Org. Chem. 2006, 71, 6269–6272. DOI: 10.1021/jo060708h.
  • Lockhart, J. C.; Mc Donnell, M. B.; Tyson, P. D. Ligands for the alkali metals. Part 7. Synthesis and characterisation of crown ether macrocylces containing the di-1-naphthylmethyl unit as a novel steric barrier. J. Chem. Soc., Perkin Trans. 1983, 1, 2153-2159. DOI: 10.1039/p19830002153.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.