342
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis of selenocysteine-containing dipeptides modeling the active site of thioredoxin reductase

&
Pages 750-752 | Received 28 Mar 2019, Accepted 01 Apr 2019, Published online: 11 Apr 2019

References

  • Ren, X.; Zou, L.; Lu, J.; Holmgren, A. Selenocysteine in Mammalian Thioredoxin Reductase and Application of Ebselen as a Therapeutic. Free Rad. Biol. Med. 2018, 127, 238–247. DOI: 10.1016/j.freeradbiomed.2018.05.081.
  • Lothrop, A. P.; Snider, G. W.; Ruggles, E. L.; Patel, A. S.; Lees, W. J.; Hondal, R. J. Selenium as an Electron Acceptor during the Catalytic Mechanism of Thioredoxin Reductase. Biochemistry 2014, 53, 654–663. DOI: 10.1021/bi400658g.
  • Schneider, A.; Brandt, W.; Wessjohann, L. A. Influence of pH and Flanking Serine on the Redox Potential of S-S and S-Se Bridges of Cys-Cys and Cys-Sec Peptides. Biol. Chem. 2007, 388, 1099–1101. DOI: 10.1515/BC.2007.114.
  • Ruggles, E. L.; Deker, P. B.; Hondal, R. J. Conformational Analysis of Oxidized Peptide Fragments of the C-Terminal Redox Center in Thioredoxin Reductases by NMR Spectroscopy. J. Pept. Sci. 2014, 20, 349–360. DOI: 10.1002/psc.2620.
  • Shimodaira, S.; Asano, Y.; Arai, K.; Iwaoka, M. Selenoglutathione Diselenide: unique Redox Reactions in the GPx-like Catalytic Cycle and Repairing of Disulfide Bonds in Scrambled Protein. Biochemistry 2017, 56, 5644–5653. DOI: 10.1021/acs.biochem.7b00751.
  • Koizumi, Y.; Nagai, K.; Hasumi, K.; Kuba, K.; Sugiyama, T. Structure-Activity Relationship of Cyclic Pentapeptide Malformins as Fibrinolysis Enhancers. Bioorg. Med. Chem. Lett. 2016, 26, 5267–5271. DOI: 10.1016/j.bmcl.2016.09.045.
  • Zhong, L.; Arner, E. S. J.; Holmgren, A. Structure and Mechanism of Mammalian Thioredoxin Reductase: The Active Site Is a Redox-Active Selenolthiol/Selenenylsulfide Formed from the Conserved Cysteine-Selenocysteine Sequence. Proc. Natl. Acad. Sci. U.S.A 2000, 97, 5854–5859. DOI: 10.1073/pnas.100114897.
  • Pascual, P.; Martinez-Lara, E.; Bárcena, J. A.; López-Barea, J.; Toribio, F. Direct Assay of Glutathione Peroxidase Activity Using High-Performance Capillary Electrophoresis. J. Chromatogr. B: Biomed. Sci. Appl. 1992, 581, 49–56. DOI: 10.1016/0378-4347(92)80446-W.
  • Ibrahim, M.; Muhammad, N.; Naeem, M.; Deobald, A. M.; Kamdem, J. P.; Rocha, J. B. T. In Vitro Evaluation of Glutathione Peroxidase (Gpx)-like Activity and Antioxidant Properties of an Organoselenium Compound. Toxicol. in Vitro 2015, 29, 947–952. DOI: 10.1016/j.tiv.2015.03.017.
  • Brandt, W.; Wessjohann, L. A. The Functional Role of Selenocysteine (Sec) in the Catalysis Mechanism of Large Thioredoxin Reductases: proposition of a Swapping Catalytic Traid Including a Sec-His-Glu State. ChemBioChem 2005, 6, 386–394. DOI: 10.1002/cbic.200400276.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.