431
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis, antibacterial activity and docking studies of substituted quinolone thiosemicarbazones

, , & ORCID Icon
Pages 1074-1081 | Received 06 Jan 2019, Accepted 09 May 2019, Published online: 30 May 2019

References

  • Madapa, S.; Tusi, Z.; Batra, S. Advances in the Syntheses of Quinoline and Quinoline-Annulated Ring Systems. COC. 2008, 12, 1116–1183. DOI:10.2174/138527208785740300.
  • Brouet, J.-C.; Gu, S.; Peet, N. P.; Williams, J. D. A Survey of Solvents for the Conrad-Limpach Synthesis of 4-Hydroxyquinolones. Synth. Commun. 2009, 39, 5193–5196. DOI:10.1080/00397910802542044.
  • Redgrave, L. S.; Sutton, S. B.; Webber, M. A.; Piddock, L. J. V. Fluoroquinolone Resistance: Mechanisms, Impact on Bacteria, and Role in Evolutionary Success. Trends Microbiol. 2014, 22, 438–445. DOI:10.1016/j.tim.2014.04.007.
  • Oliphant, C. M.; Green, G. M. Quinolones: A Comprehensive Review. Am. Fam. Physician. 2002, 65, 455–464. www.aafp.org/afp/2002/0201/p455.
  • Grossman, R. F.; Hsueh, P.-R.; Gillespie, S. H.; Blasi, F. Community-Acquired Pneumonia and Tuberculosis: Differential Diagnosis and the Use of Fluoroquinolones. Int. J. Infect. Dis. 2014, 18, 14–21. DOI:10.1016/j.ijid.2013.09.013.
  • Aldred, K. J.; Kerns, R. J.; Osheroff, N. Mechanism of Quinolone Action and Resistance. Biochem. 2014, 53, 1565–1574. DOI:10.1021/bi5000564.
  • Drago, L.; De, V. E.; Mombelli, B.; Nicola, L.; Valli, M.; Gismondo, M. R. Activity of Levofloxacin and Ciprofloxacin against Urinary Pathogens. J. Antimicrob. Chemother. 2001, 48, 37–45. DOI:10.1093/jac/48.1.37.
  • Ren, H.; Li, X.; Ni, Z.-H.; Niu, J.-Y.; Cao, B.; Xu, J.; Cheng, H.; Tu, X.-W.; Ren, A.-M.; Hu, Y. Treatment of Complicated Urinary Tract Infection and Acute Pyelonephritis by Short‑Course Intravenous Levofloxacin (750 mg/Day) or Conventional Intravenous/Oral Levofloxacin (500 mg/Day):Prospective, Open‑Label, Randomized, Controlled, Multicenter, Non‑Inferiority Clinical Trial. Int. Urol. Nephrol. 2017, 49, 499–507. DOI:10.1007/s11255-017-1507-0.
  • Bano, B.; Arshia; Khan, K. M.; Kanwal; Fatima, B.; Taha, M.; Ismail, N. H.; Wadood, A.; Ghufran, M.; Perveen, S. Synthesis, In Vitro β-Glucuronidase Inhibitory Potential and Molecular Docking Studies of Quinolines. Eur. J. Med. Chem. 2017, 139, 849–864. DOI:10.1016/j.ejmech.2017.08.052.
  • Khan, K. M.; Saify, Z. S.; Khan, Z. A.; Ahmed, M.; Saeed, M.; Schick, M.; Kohlbau, H.-J.; Voelter, W. Syntheses and Cytotoxic, Antimicrobial, Antifungal and Cardiovascular Activity of New Quinoline Derivatives. Arzneimittelforschung/Drug Res. 2000, 50, 915–924. DOI:10.1055/s-0031-1300313.
  • Hassan, A. A.; Shawky, A. M.; Shehatta, H. S. Chemistry and Heterocyclization of Thiosemicarbazones. J. Heterocyclic Chem. 2012, 49, 21–37. DOI:10.1002/jhet.677.
  • Mohamed, E. A. Some New Quinolones of Expected Pharmaceutical Importance Derived from 1,2-Dihydro-4-Hydroxy-1-Methyl-2-Oxoquinoline-3-Carbaldehyde. Chem. Pap. 1994, 48, 261–267. DOI:10.1002/chin.199739170.
  • Kizilcikli, İ.; Kurt, Y. D.; Akkurt, B.; Genel, A. Y.; Birteksöz, S.; Ötük, G.; Ülküseven, B. Antimicrobial Activity of a Series of Thiosemicarbazones and their Zn(II) and Pd(II) Complexes. Folia Microbiol. 2007, 52, 15–25. DOI:10.1007/BF02932132.
  • Pahontu, E.; Julea, F.; Rosu, T.; Purcarea, V.; Chumakov, Y.; Petrenco, P.; Gulea, A. Antibacterial, Antifungal and in Vitro Antileukemia Activity of Metal Complexes with Thiosemicarbazones. J. Cell. Mol. Med. 2015, 19, 865–878. DOI:10.1111/jcmm.12508.
  • Karaküçük-İyidoğan, A.; Mercan, Z.; Oruç-Emre, E. E.; Taşdemir, D.; İşler, D.; Kılıç, I. H.; Özaslan, M. Synthesis, Characterization, and Biological Evaluation of Some Novel Thiosemicarbazones as Possible Antibacterial and Antioxidant Agents. Phosphorus, Sulfur Silicon Relat. Elem. 2014, 189, 661–673. DOI:10.1080/10426507.2013.844139.
  • Biot, C.; Pradines, B.; Sergeant, M.-H.; Gut, J.; Rosenthal, P. J.; Chibale, K. Design, Synthesis, and Antimalarial Activity of Structural Chimeras of Thiosemicarbazone and Ferroquine Analogues. Bioorg. Med. Chem. Lett. 2007, 17, 6434–6438. DOI:10.1016/j.bmcl.2007.10.003.
  • Hu, K.; Yang, Z.-H.; Pan, S.-S.; Xu, H.-J.; Ren, J. Synthesis and Antitumor Activity of Liquiritigenin Thiosemicarbazone Derivatives. Eur. J. Med. Chem. 2010, 45, 3453–3458. DOI:10.1016/j.ejmech.2010.04.036.
  • Padmanabhan, P.; Khaleefathullah, S.; Kaveri, K.; Palani, G.; Ramanathan, G.; Thennarasu, S.; Sivagnanam, U. T. Antiviral Activity of Thiosemicarbazones Derived from α-Amino Acids against Dengue Virus. J. Med. Virol. 2017, 89, 546–552. DOI:10.1002/jmv.24655.
  • Hu, W.-X.; Zhou, W.; Xia, C.-N.; Wen, X. Synthesis and Anticancer Activity of Thiosemicarbazones. Bioorg. Med. Chem. Lett. 2006, 16, 2213–2218. DOI:10.1016/j.bmcl.2006.01.048.
  • Hernández, W.; Paz, J.; Carrasco, F.; Vaisberg, A.; Spodine, E.; Manzur, J.; Hennig, L.; Sieler, J.; Blaurock, S.; Beyer, L. Synthesis and Characterization of New Palladium(II) Thiosemicarbazone Complexes and Their Cytotoxic Activity against Various Human Tumor Cell Lines. Bioinorg. Chem. Appl. 2013, Article ID 524701, 12 pages. DOI:10.1155/2013/524701.
  • Banerjee, D.; Yogeeswari, P.; Bhat, P.; Thomas, A.; Srividya, M.; Sriram, D. Novel Isatinyl Thiosemicarbazone Derivatives as Potential Molecules to Combat HIV-TB co-Infection. Eur. J. Med. Chem. 2011, 46, 106–121. DOI:10.1016/j.ejmech.2010.10.020.
  • Dave, S. S.; Rahatgaonkar, A. M. Syntheses and anti-Microbial Evaluation of New Quinoline Scaffold Derived Pyrimidine Derivatives. Arabian J. Chem. 2016, 9, S451–S456. DOI:10.1016/j.arabjc.2011.06.009.
  • Vandekerckhove, S.; D’hooghe, M. Quinoline-Based Antimalarial Hybrid Compounds. Bioorg. Med. Chem. 2015, 23, 5098–5119. DOI:10.1016/j.bmc.2014.12.018.
  • Sudha, N. Synthesis, Characterisation and Biological Studies on Fe(II) and Zn(II) Quinoline Schiff Base Complexes. Int. J. ChemTech Res. 2015, 8, 367–374.
  • Ukrainets, I. V.; Yangyang, L.; Tkach, A. A.; Gorokhova, O. V.; Turov, A. V. 4-Hydroxy-2-Quinolones 165. 1-R-4-Hydroxy-2-Oxo-1,2-Dihydro-Quinoline-3-Carbaldehydes and Their Thiosemicarbazones. Synthesis, Structure, and Biological Properties. Chem. Heterocycl. Comp. 2009, 45, 705–714. DOI:10.1007/s10593-009-0327-2.
  • Liu, Z.-C.; Wang, B.-D.; Yang, Z.-Y.; Li, Y.; Qin, D.-D.; Li, T.-R. Synthesis, Crystal Structure, DNA Interaction and Antioxidant Activities of Two Novel Water-Soluble Cu2+ Complexes Derivated from 2-Oxo-Quinoline-3-Carbaldehyde Schiff-Bases. Eur. J. Med. Chem. 2009, 44, 4477–4484. DOI:10.1016/j.ejmech.2009.06.009.
  • Raja, D. S.; Paramaguru, G.; Bhuvanesh, N. S. P.; Reibenspies, J. H.; Renganathan, R.; Natarajan, K. Effect of Terminal N-Substitution in 2-Oxo-1,2-Dihydroquinoline-3-Carbaldehyde Thiosemicarbazones on the Mode of Coordination, Structure, Interaction with Protein, Radical Scavenging and Cytotoxic Activity of Copper(II)Complexes. Dalton Trans. 2011, 40, 4548–4559. DOI:10.1039/c0dt01657h.
  • Yeyi, Z.; Hui, X.; Yilin, F.; Xianxian, L. 3-Schiff Base-2-(1H)-Quinolone Derivative and Preparation Method and Application Thereof. Chin. Patent, CN 102875464 A 2013.
  • Jayakumar Swamy, B. H. M.; Praveen, Y.; Pramod, N.; Shivkumar, B.; Shivkumar, H. Nagendra Rao, R. Synthesis, Characterization and anti-Inflammatory Activity of 3-Formyl-2-Hydroxy Quinoline Thiosemicarbazides. J. Pharm. Res. 2012, 5, 2735–2737.
  • Serda, M.; Kalinowski, D. S.; Mrozek-Wilczkiewicz, A.; Musiol, R.; Szurko, A.; Ratuszna, A.; Pantarat, N.; Kovacevic, Z.; Merlot, A. M.; Richardson, D. R.; Polanski, J. Synthesis and Characterization of Quinoline-Based Thiosemicarbazones and Correlation of Cellular Iron-Binding Efficacy to anti-Tumor Efficacy. Bioorg. Med. Chem. Lett. 2012, 22, 5527–5531. DOI:10.1016/j.bmcl.2012.07.030.
  • Bisceglie, F.; Musiari, A. M.; Pinelli, S.; Alinovi, R.; Menozzi, I.; Polverini, E.; Tarasconi, P.; Tavone, M.; Pelosi, G. Quinoline-2-Carboxaldehyde Thiosemicarbazones and their Cu(II) and Ni(II) Complexes as Topoisomerase IIa Inhibitors. J. Inorg. Biochem. 2015, 152, 10–19. DOI:10.1016/j.jinorgbio.2015.08.008.
  • Levy, S. B. Factors Impacting on the Problem of Antibiotic Resistance. J. Antimicrob. Chemother. 2002, 49, 25–30. DOI:10.1093/jac/49.1.25.
  • Neu, H. C. The Crisis in Antibiotic Resistance. Science 1992, 257, 1064–1073. DOI:10.1126/science.257.5073.1064.
  • Toth, J.; Blasko, G.; Dancso, A.; Toke, L.; Nyerges, M. Synthesis of New Quinoline Derivatives. Synth. Commun. 2006, 36, 3581–3589. DOI:10.1080/00397910600943568.
  • Abdel-Moty, S. G.; Abdel-Rahman, M. H.; Elsherief, H. A.; Kafafy, A. H. N. Synthesis of Some Quinoline Thiosemicarbazone Derivatives of Potential Antimicrobial Activity. Bull. Pharm. Sci. (Assiut University) 2005, 28, 79–93.
  • Hussein, M. A.; Kafafy, A. H. N.; Abdel-Moty, S. G.; Abou-Ghadir, O. M. F. Synthesis and Biological Activities of New Substituted Thiazoline-Quinoline Derivatives. Acta Pharm. 2009, 59, 365–382. DOI:10.2478/v10007-009-0033-8.
  • Andrews, J. M. Determination of Minimum Inhibitory Concentrations. J. Antimicrob. Chemother. 2001, 48, 5–16. DOI:10.1093/jac/48.suppl_1.5.
  • Kalhapure, R. S.; Akamanchi, K. G.; Mocktar, C.; Govender, T. Synthesis and Antibacterial Activity of Silver Nanoparticles Capped with a Carboxylic Acid Terminated Generation 1 Oleodendrimer. Chem. Lett. 2014, 43, 1110–1112. DOI:10.1246/cl.140151.
  • Zhou, Z. G.; Wang, Y. L.; Bryant, S. H. Computational Analysis of the Cathepsin B Inhibitors Activities through LR-MMPBSA Binding Affinity Calculation Based on Docked Complex. J. Comput. Chem. 2009, 30, 2165–2175. DOI:10.1002/jcc.21214.
  • Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. UCSF Chimera–a Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. DOI:10.1002/jcc.20084.
  • Trott, O.; Olson, A. J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. DOI:10.1002/jcc.21334.
  • Sanner, M. F. Python: A Programming Language for Software Integration and Development. J. Mol. Graph. Model. 1999, 17, 57–61. DOI:10.1016/S1093-3263(99)99999-0.
  • Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. J. Comput. Chem. 1998, 19, 1639–1662. DOI:10.1002/(sici)1096-987x(19981115)19:14 < 1639::aid-jcc10 > 3.0.co;2-b.
  • Huey, R.; Morris, G. M.; Olson, A. J.; Goodsell, D. S. A Semiempirical Free Energy Force Field with Charge-Based Desolvation. J. Comput. Chem. 2007, 28, 1145–1152. DOI:10.1002/jcc.20634.
  • Kumalo, H. M.; Soliman, M. E. Per-Residue Energy Footprints-Based Pharmacophore Modeling as an Enhanced in Silico Approach in Drug Discovery: A Case Study on the Identification of Novel β-secretase1 (BACE1) Inhibitors as anti-Alzheimer Agents. Cel. Mol. Bioeng. 2016, 9, 175–189. DOI:10.1007/s12195-015-0421-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.