120
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis of oligophosphonate aromatic systems using the Michaelis-Arbuzov reaction and microwave radiation

, , &
Pages 1082-1089 | Received 21 Dec 2018, Accepted 16 Apr 2019, Published online: 13 Jun 2019

References

  • Bhatacharya, A. K.; Thyagarman, G. Michaelis-Arbuzov Rearrangement. Сhem. Rev. 1981, 81, 415–430. DOI:10.1021/cr00044a004.
  • Babu, B. H.; Prasad, G. S.; Raju, C. N.; Basaveswara Rao, M. V. Synthesis of Phosphonates via Michaelis-Arbuzov Reaction. COS 2017, 14, 883–903. DOI:10.2174/1570179414666161230144455.
  • Cherenok, S.; Kalchenko, V. Phosphorus-Containing Calixarenes. Top. Heterocycl. Chem. 2009, 20, 229–273. DOI:10.1007/7081_2008_12.
  • Firmino, A. D. G.; Figueira, F.; Tomé, J. P. C.; Paz, F. A.; Rocha, J. Metal–Organic Frameworks Assembled from Tetraphosphonic Ligands and Lanthanides. Coord. Chem. Rev. 2018, 355, 133–149. DOI:10.1016/j.ccr.2017.08.001.
  • Jansa, P.; Holý, A.; Dračinský, M.; Baszczyňski, O.; Česnek, M.; Janeba, Z. Efficient and ‘Green’ Microwave-Assisted Synthesis of Haloalkylphosphonates via the Michaelis–Arbuzov Reaction. Green Chem. 2011, 13, 882–888. DOI:10.1039/c0gc00509f.
  • Kasyan, O.; Swierczynski, D.; Drapailo, A.; Suwinska, K.; Lipkowski, J.; Kalchenko, V. Upper Rim Substituted Thiacalix[4]Arenes. Tetrahedron Lett. 2003, 44, 7167–7170. DOI:10.1016/S0040-4039(03)01809-4.
  • Khakina, E. A.; Yamilova, O. R.; Novikov, A. V.; Godovikov, I. A.; Peregudov, A. S.; Troshin, P. A. Toward an Understanding of the Mechanism of the Arbuzov-Type Reaction of C60Cl6 with Phosphites. Tetrahedron Lett. 2016, 57, 5570–5574. DOI:10.1016/j.tetlet.2016.08.080.
  • Antipin, I. S.; Kazakova, E. K.; Habicher, W. D.; Konovalov, A. I. Phosphorus-Containing Calixarenes. Russ. Chem. Rev. 1998, 67, 905–922. DOI:10.1070/RC1998v067n11ABEH000472.
  • Mourer, M.; Regnouf-de-Vains, J.-B. New Efficient Synthetic Pathways to Tetrakis{p‐[(Diethylphosphono)Methyl]}Calix[4]Arene. Helv. Chim. Acta. 2012, 95, 766–771. DOI:10.1002/hlca.201100413.
  • Bouzina, A.; Belhani, B.; Aouf, N.-E.; Berredjem, M. A Novel, Rapid and Green Method of Phosphorylation under Ultrasound Irradiation and Catalyst Free Conditions. RSC Adv. 2015, 5, 46272–46275. DOI:10.1039/C5RA06380A.
  • Maier, L. Organic Phosphorus Compounds 69. Synthesis and Properties of Cyclic Phosphonate and Thiophosphonate Esters. Syn. React. Inorg. Metal-Org. Chem. 1976, 6, 133–155. DOI:10.1080/00945717608057350.
  • Sing, G. Synthesis and Thermolysis of Poly(2,2-Dimethyltrimethylene Phenylphosphinate). J. Org. Chem 1979, 44, 1060–1063. DOI:10.1021/jo01321a007.
  • Denmark, S. E.; Kim, J.-H. Asymmetric Michael Addition Reaction of Phosphorus-Stabilized Allyl Anions with Cyclic Enones. J. Org. Chem. 1995, 60, 7535–7547. DOI:10.1021/jo00128a028.
  • Denmark, S. E.; Chien-Tien, C. Alkylation of Chiral, Phosphorus-Stabilized Carbanions: Substituent Effects on the Alkylation Selectivity. J. Org. Chem. 1994, 59, 2922–2924. DOI:10.1021/jo00090a004.
  • Afarinkia, K.; Binch, H. M.; De Pascale, E. Asymmetric Nucleophilic Addition to Vinylphosphonates (Part I). Synlett 2000, 12, 1769–1770. DOI:10.1055/s-2000-8695.
  • Afarinkia, K.; De Pascale, E. Asymmetric Nucleophilic Addition to Vinylphosphonates (Part III). Synlett 2002, 6, 990–992. DOI:10.1055/s-2002-31895.
  • Shipov, A. E.; Genkina, G. K.; Petrovskii, P. V.; Lyssenko, K. A.; Mastryukova, T. A. Interaction of 2-Alkoxy-3-Alkyl-1,3,2-Oxazaphosphinanes with Alkyl Chloroformates. Phosphorus, Sulfur, Silicon Relat. Elem 2008, 183, 646–647. DOI:10.1080/10426500701795910.
  • Shipov, A. E.; Genkina, G. K.; Petrovskii, P. V.; Goryunov, E. I.; Makarov, M. V. Novel Biologically Active 1,3,2-Oxazaphosphinane Derivatives. Phosphorus, Sulfur, Silicon, Relat. Elem. 2011, 186, 945–951. DOI:10.1080/10426507.2010.520281.
  • Lange, R.; Heine, R.; Knapp, R.; de Klerk, J. M. H.; Bloemendal, H. J.; Hendrikse, N. H. Pharmaceutical and Clinical Development of Phosphonate-Based Radiopharmaceuticals for the Targeted Treatment of Bone Metastases. Bone 2016, 91, 159–179. DOI:10.1016/j.bone.2016.08.002.
  • Mugrage, B.; Diefenbacher, C.; Somers, J.; Parker, D. T.; Parker, T. Phosphonic Acid Analogs of Diclofenac: An Arbuzov Reaction of Trimethylphosphite with an ortho-Quinonoid Intermediate. Tetrahedron Lett 2000, 41, 2047–2050. DOI:10.1016/S0040-4039(00)00111-8.
  • DeGraw, A. J.; Zhao, Z.; Strickland, C. L.; Taban, A. H.; Hsieh, J.; Jefferies, M.; Xie, W.; Shintani, D. K.; McMahan, C. M.; Cornish, K.; Distefano, M. D. A Photoactive Isoprenoid Diphosphate Analogue Containing a Stable Phosphonate Linkage: Synthesis and Biochemical Studies with Prenyltransferases. J. Org. Chem. 2007, 72, 4587–4595. DOI:10.1021/jo0623033.
  • Rao, L. N.; Nagaraju, C.; Reddy, C. D.; Auschwitz, T. S.; Brown, C. W.; Klucik, J.; Hickey, M. R.; Wakefield, C. A.; Berlin, K. D. Synthesis and Antimicrobial Activity of 2-Substituted-2,3-Dyhydro-5-Thiophenoxy-1H-1,3,2-Benzodiazaphosphole 2-Oxydes. Phosphorus, Sulfur, Silicon Relat. Elem. 2000, 158, 39–56. DOI:10.1080/10426500008042072.
  • Leoncini, A.; Huskens, J.; Verboom, W. Ligands for f-Element Extraction Used in the Nuclear Fuel Cycle. Chem. Soc. Rev. 2017, 46, 7229–7273. DOI:10.1039/C7CS00574A.
  • Miroshnichenko, S.; Ternova, D.; Billard, I.; Ouadi, A.; Klimchuk, O.; Kalchenko, V. Synthesis of New Calixarene-Phosphine Oxides and Their Extraction Properties in Ionic Liquids. Phosphorus, Sulfur, Silicon, Relat. Elem. 2011, 186, 903–905. DOI:10.1080/10426507.2010.526671.
  • Aladzheva, I. M.; Bykhovskaya, O. V.; Nelyubina, Y. V.; Petrovskii, P. V.; Odinets, I. L. N-Phosphoryl-2-Oxo-1,2-Azaphospholanes: First Example of Cyclic O,O-Bidentate Ligands with the P-N-P Backbone. Phosphorus, Sulfur, Silicon Relat. Elem. 2011, 186, 769–771. DOI:10.1080/10426507.2010.499549.
  • Krekic, K.; Klintuch, D.; Pietschnig, R. Facile Access to Efficiently Luminescent Ln3+ Phosphonic Ester Coordination Polymers (Ln = Eu, Tb, Dy). Chem. Commun. 2017, 53, 11076–11079. DOI:10.1039/C7CC06621J.
  • Maffei, F.; Brancatelli, G.; Barboza, T.; Dalcanale, E.; Geremia, S.; Pinalli, R. Inherently Chiral Phosphonate Cavitands as Enantioselective Receptors for Mono-Methylated L-Amino Acids. Supramol. Chem. 2018, 30, 600–609. DOI:10.1080/10610278.2017.1417991.
  • Drigo, N. A.; Gorbunov, A. N.; Gorbunov, D. N.; Talanova, M. Y.; Kardasheva, Y. S.; Kovalev, V. V.; Maximov, A. L.; Vatsouro, I. M. Synthesis of Polyfunctional Phosphorus-Containing Calixarenes in Cycloaddition Reactions of Azides to Alkynes. Chem. Heterocycl. Comp. 2016, 52, 1042–1053. DOI:10.1007/s10593-017-2005-0.
  • Macarie, L.; Ilia, G.; Iliescu, S.; Popa, A.; Dehelean, G.; Manoviciu, I.; Petrean, A.; Abadie, M. J. M. Phosphorus Compounds as Photoinitiators for Radicalic Polymerization. Mol. Cryst. Liq. Cryst. 2004, 416, 165–173. DOI:10.1080/15421400490478957.
  • Papazoglou, E. S. Flame Retardants for Plastics. In Handbook of Building Materials for Fire Protection; Harper, C. A., Ed. (McGraw-Hill: New York, NY, 2004), pp 4.1–4.88.
  • Weil, E. D. Phosphorus Flame Retardants. In Kirk-Othmer Encyclopedia of Chemical Technology 1993, 10, 976–998.
  • Pinalli, R.; Dalcanale, E.; Ugozzoli, F.; Massera, C. Resorcinarene-Based Cavitands as Building Blocks for Crystal Engineering. CrystEngComm. 2016, 18, 5788–5802. DOI:10.1039/C6CE01010E.
  • Pinalli, R.; Pedrini, A.; Dalcanale, E. Biochemical Sensing with Macrocyclic Receptors. Chem. Soc. Rev. 2018, 47, 7006–7026. DOI:10.1039/C8CS00271A.
  • Serkova, O. S.; Glushko, V. V.; Egorova, M. A.; Maslennikova, V. I. Microwave Assisted Alkylation of Ortho-Methyl-tetra-C-Naphthyl-Resorcinarene and Its Phosphorylated Derivatives with Haloalkanes and Ethyl Bromoacetate. Tetrahedron Lett 2018, 59, 2586–2589. DOI:10.1016/j.tetlet.2018.05.062.
  • Maslennikova, V. I.; Serkova, O. S.; Gruner, M.; Goutal, S.; Bauer, I.; Habicher, W. D.; Lyssenko, K. A.; Antipin, M. Y.; Nifantyev, E. E. Synthesis and Conformation Analysis of New Perphosphorylated Calix[4]Resorcinarenes. Eur. J. Org. Chem. 2004, 2004, 4884–4893. DOI:10.1002/ejoc.200400363.
  • Batalova, T. A.; Rasadkina, E. N.; Vasyanina, L. K.; Belsky, V. K.; Nifantyev, E. E. Cyclic Diphosphites Derived from 1,1'-Methylenedinaphthol. Synthesis, Structure, and Features of Chemical Behavior. Russ. J. Gen. Chem. 1997, 67, 1406–1413.
  • Maslennikova, V. I.; Sotova, T. Y.; Vasyanina, L. K.; Lyssenko, K. A.; Antipin, M. Y.; Adamson, S. O.; Dementyev, A. I.; Habicher, W. D.; Nifantyev, E. E. Regiodirected Phosphorylation of 2,2′,7,7′-Tetrahydroxydinaphthylmethane. Tetrahedron 2007, 63, 4162–4171. DOI:10.1016/j.tet.2007.02.095.
  • Högberg, A. G. S. Two Stereoisomeric Macrocyclic Resorcinol-Acetaldehyde Condensation Products. J. Org. Chem 1980, 45, 4498–4500. DOI:10.1021/jo01310a046.
  • Högberg, A. G. S. Cyclooligomeric Phenol-Aldehyde Condensation Products. 2. Stereoselective Synthesis and DNMR Study of Two 1,8,15,22-Tetraphenyl[14]Metacyclophan-3,5,10,12,17,19,24,26-Octols. J. Am. Chem. Soc 1980, 102, 6046–6050. DOI:10.1021/ja00539a012.
  • Mislow, K.; Raban, M. Stereoisomeric Relationships of Groups in Molecules. Topics in Stereochemisty 1967, 1, 1–38. DOI:10.1002/9780470147108.ch1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.