1,691
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Green syntheses of potentially bioactive α-hydroxyphosphonates and related derivatives

, &
Pages 1003-1006 | Received 20 May 2019, Accepted 07 Jun 2019, Published online: 17 Jun 2019

References

  • Tao, M.; Bihovsky, R.; Wells, G. J.; Mallamo, J. P. Novel Peptidyl Phosphorus Derivatives as Inhibitors of Human Calpain I. J. Med. Chem. 1998, 41, 3912–3916. DOI:10.1021/jm980325e.
  • Dellaria, J. F.; Jr.; Maki, R. G.; Stein, H. H.; Cohen, J.; Whittern, D.; Marsh, K.; Hoffman, D. J.; Plattner, J. J.; Perun, T. J. Organocatalytic Enantioselective Synthesis of α-Hydroxy Phosphonates. J. Med. Chem. 1990, 33, 534–542. DOI:10.1021/ja062091r.
  • Kafarski, P.; Lejczak, B. Review on Enzymatic Methods. J. Mol. Catal. B Enzym. 2004, 29, 99–104. DOI:10.1016/j.molcatb.2003.12.013.
  • Fleisch, H. Bisphosphonates: mechanisms of Action. Endocr. Rev. 1998, 19, 80–100. DOI:10.1210/edrv.19.1.0325.
  • Kategaonkar, A. H.; Pokalwar, R. U.; Sonar, S. S.; Gawali, V. U.; Shingate, B. B.; Shingare, M. S. Synthesis, in Vitro Antibacterial and Antifungal Evaluations of New Alpha-Hydroxyphosphonate and New Alpha-Acetoxyphosphonate Derivatives of Tetrazolo [1, 5-a] Quinoline. Eur. J. Med. Chem 2010, 45, 1128–1132. DOI:10.1016/j.ejmech.2009.12.013.
  • Snoeck, R.; Holy, A.; Dewolf-Peeters, C.; Van Den Ord, J.; De Clercq, E.; Andrei, G. Antivaccinia Activities of Acyclic Nucleoside Phosphonate Derivatives in Epithelial Cells and Organotypic Cultures. Antimicrob. Agents Chemother. 2002, 46, 3356–3361. DOI:10.1128/AAC.46.11.3356-3361.2002.
  • Pokalwar, R. U.; Hangarge, R. V.; Maske, P. V.; Shingare, M. S. Synthesis and Antibacterial Activities of α-Hydroxyphosphonates and α-Acetyloxyphosphonates Derived from 2-Chloroquinoline-3-Carbaldehyde. Arkivoc 2006, 11, 196–204. DOI:10.3998/ark.5550190.0007.b20.
  • Kalla, R. M. N.; Lee, H. R.; Cao, J.; Yoo, J. W.; Kim, I. Phospho Sulfonic Acid: An Efficient and Recyclable Solid Acid Catalyst for the Solvent-Free Synthesis of α-Hydroxyphosphonates and Their Anticancer Properties. New J. Chem. 2015, 39, 3916–3922. DOI:10.1039/C5NJ00312A.
  • Rádai, Z.; Keglevich, G. Synthesis and Reactions of α-Hydroxyphosphonates. Molecules 2018, 23, 1493–1522. DOI:10.3390/molecules23061493.
  • Chen, X. B.; Shi, D. Q. Synthesis and Biological Activity of Novel Phosphonate Derivatives Containing of Pyridyl and 1,2,3-Triazole Rings. Phosphorus Sulfur Silicon Relat. Elem. 2008, 183, 1134–1144. DOI:10.1080/10426500701578522.
  • Chen, T.; Shen, P.; Li, Y.; He, H. Synthesis and Herbicidal Activity of O,O-Dialkyl Phenoxyacetoxyalkylphosphonates Containing Fluorine. J. Fluorine Chem. 2006, 127, 291–295. DOI:10.1016/j.jfluchem.2005.11.013.
  • Peng, H.; Wang, T.; Xie, P.; Chen, T.; He, H. W.; Wan, J. Molecular Docking and Three-Dimensional Quantitative Structure-Activity Relationship Studied on the Binding Modes of Herbicidal 1-(Substituted Phenoxyacetoxy)Alkylphosphonates to the E1 Component of Pyruvate Dehydrogenase. J. Agric. Food Chem. 2007, 55, 1871–1880. DOI:10.1021/jf062730h.
  • Wang, W.; Wang, L. P.; Ning, B. K.; Mao, M. Z.; Xue, C.; Wang, H. Y. Synthesis and Insecticidal Activities of O,O-Dialkyl-2-[3-Bromo-1-(3-Chloropyridin-2-yl)-1H-Pyrazole-5-Carbonyloxy] (Aryl) Methylphosphonates. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 1362–1367. DOI:10.1080/10426507.2016.1206103.
  • Mucha, A.; Kafarski, P.; Berlicki, L. Remarkable Potential of the α-Aminophosphonate/Phosphinate Structural Motif in Medicinal Chemistry. J. Med. Chem. 2011, 54, 5955–5980. DOI:10.1021/jm200587f.
  • Kiss, N. Z.; Rádai, Z.; Mucsi, Z.; Keglevich, G. Synthesis of α‐Aminophosphonates from α‐Hydroxyphosphonates; a Theoretical Study. Heteroatom Chem. 2016, 27, 260–268. DOI:10.1002/hc.21324.
  • Rádai, Z.; Kiss, N. Z.; Keglevich, G. Synthesis of α-Hydroxyphosphonates, an Important Class of Bioactive Compounds. 91–107. In Organophosphorus Chemistry: Novel Developments; Keglevich, G.; Ed..; Walter de Gruyter: Berlin, 2018.
  • Keglevich, G.; Rádai, Z.; Kiss, N. Z. To Date the Greenest Method for the Preparation of α-Hydroxyphosphonates from Substituted Benzaldehydes and Dialkyl Phosphites. Green Proc. Synth. 2017, 6, 197–201. DOI:10.1515/gps-2016-0125.
  • Chen, X.B.; Shi, D.Q. Synthesis and biological activity of novel phosphonate derivatives containing of pyridyl and 1,2,3-triazole rings. Phosphorus Sulfur Silicon Relat. Elem. 2008, 183, 1134–1144. DOI:10.1080/10426500701578522
  • Rádai, Z.; Hodula, V.; Kiss, N. Z.; Kóti, J.; Keglevich, G. Phosphorylation of (1-Aryl-1-Hydroxymethyl)Phosphonates. Mend. Commun. 2019, 29, in press. DOI:10.1016/j.mencom.2019.03.
  • Kiss, N. Z.; Kaszás, A.; Drahos, L.; Mucsi, Z.; Keglevich, G. A Neighbouring Group Effect Leading to Enhanced Nucleophilic Substitution of Amines at the Hindered α-Carbon Atom of an α-Hydroxyphosphonate. Tetrahedron Lett. 2012, 53, 207–209. DOI:10.1016/j.tetlet.2011.11.026.
  • Desai, J.; Wang, Y.; Wang, K.; Malwal, S. R.; Oldfield, E. Isoprenoid Biosynthesis Inhibitors Targeting Bacterial Cell Growth. Chem. Med. Chem. 2016, 11, 2205–2215. DOI:10.1002/cmdc.201600343.
  • Rádai, Z.; Szeles, P.; Kiss, N. Z.; Hegedűs, L.; Windt, T.; Nagy, V.; Keglevich, G. Green Synthesis and Cytotoxic Activity of Dibenzyl α‐Hydroxyphosphonates and α‐Hydroxyphosphonic Acids. Heteroatom Chem. 2018, 29, e21436. DOI:10.1002/hc.21436.