283
Views
2
CrossRef citations to date
0
Altmetric
Short Communication

CeCl3⋅7H2O-catalysed hydrophosphonylation of aldehydes and ketones: An expeditious route to α-hydroxyphosphonates under solvent-free conditions

, , & ORCID Icon
Pages 1091-1097 | Received 25 Feb 2019, Accepted 15 Jun 2019, Published online: 26 Jun 2019

References

  • (a) Patel, D. V.; Rielly-Gauvin, K.; Ryono, D. E. Preparation of Peptidic α-Hydroxy Phosphonates a New Class of Transition State Analog Renin Inhibitors. Tetrahedron Lett. 1990, 31, 5587–5590. DOI:10.1016/S0040-4039(00)97903-6. (b) Stowasser, B.; Budt, K.-H.; Jia n-Qi, L.; Peyman, A.; Ruppert, D. New Hybrid Transition State Analog Inhibitors of HIV Protease with Peripheric C2-Symmetry. Tetrahedron Lett. 1992, 33, 6625–6628. DOI:10.1016/S0040-4039(00)61002-X. (c) Alder, M.; Nicholson, J. D.; Starks, D. F.; Kane, C. T.; Cornille, F.; Hackley, B. E. Evaluation of Phosphoramidon and Three Synthetic Phosphonates for Inhibition of Botulinum Neurotoxin B Catalytic Activity. J. Appl. Toxicol. 1999, 19, S5–S11. DOI:10.1002/(SICI)1099-1263(199912)19. (d) Cox, R. J.; Gibson, J. S.; Martín, M. B. M. Aspartyl Phosphonates and Phosphoramidates: The First Synthetic Inhibitors of Bacterial Aspartate‐semialdehyde Dehydrogenase. Chem. Bio. Chem. 2002, 3, 874–886. DOI:10.1002/1439-7633(20020902)3:9 < 874::AID-CBIC874 > 3.0.CO;2-V. (e) Bubenik, M.; Rej, R.; Nguyen-Ba, N.; Attardo, G.; Ouellet, F.; Chan, L. Novel Nucleotide Phosphonate Analogues with Potent Antitumor Activity. Bioorg. Med. Chem. Lett. 2002, 12, 3063–3066. DOI:10.1016/S0960-894X(02)00679-0. (f) Snoeck, R.; Holy, A.; Dewolf-Peeters, C.; Van Den Oord, J.; De Clercq, E.; Andrei, G. Antivaccinia Activities of Acyclic Nucleoside Phosphonate Derivatives in Epithelial Cells and Organotypic Cultures. Antimicrob. Agents Chemother. 2002, 46, 3356–3361. DOI:10.1128/AAC.46.11.3356-3361.2002. (g) Košiová, I.; Šimák, O.; Panova, N.; Buděšínský, M.; Petrova, M.; Rejman, D.; Liboska, R.; Páv, O.; Rosenberg, I. Inhibition of Human Thymidine Phosphorylase by Conformationally Constrained Pyrimidine Nucleoside Phosphonic Acids and Their “Open-structure” Isosteres. Eur. J. Med. Chem. 2014, 74, 145–168. DOI:10.1016/j.ejmech.2013.12.026.
  • (a) Kafarski, P.; Lejczak, B.; Tyka, R.; Koba, L.; Pliszczak, E.; Wieczorek, P. Herbicidal Activity of Phosphonic, Phosphinic, and Phosphonous Acid Analogues of Phenylglycine and Phenylalanine. J. Plant Growth Regul. 1995, 14, 199–203. DOI:10.1007/BF00204912 (b) Yan, B.; Spilling, C. D. Stereospecific Pd(O)-Catalyzed Malonate Additions to Allylic Hydroxy Phosphonate Derivatives: A Formal Synthesis of (−)-Enterolactone. J. Org. Chem. 2004, 69, 2859–2862. DOI:10.1021/jo035795h. (c) Sobhani, S.; Tashrifi, Z. Synthesis of α-Functionalized Phosphonates from α-Hydroxyphosphonates. Tetrahedron 2010, 66, 1429–1439. DOI:10.1016/j.tet.2009.11.081. (d) Yan, B.; Spilling, C. D. Synthesis of Cyclopentenones via Intramolecular HWE and the Palladium-catalyzed Reactions of Allylic Hydroxy Phosphonate Derivatives. J. Org. Chem. 2008, 73, 5385–5396. DOI:10.1021/jo8004028. (e) Song, Y.; Niederer, D.; Lane-Bell, P. M.; Lam, L. K. P.; Crawley, S.; Palcic, M. M.; Pickard, M. A.; Pruess, D. L.; Vederas, J. C. Stereospecific Synthesis of Phosphonate Analogs of Diaminopimelic Acid (DAP), their Interaction with DAP Enzymes, and Antibacterial Activity of Peptide Derivatives. J. Org. Chem. 1994, 59, 5784–5793. DOI:10.1021/jo00098a045. (f) Dellaria, J. F.; Maki, R. G.; Stein, H. H.; Cohen, J.; Whittern, D.; Marsh, K.; Hoffman, D. J.; Plattner, J. J.; Perun, T. J. New Inhibitors of Renin that Contain Novel Phosphostatine Leu-Val Replacements. J. Med. Chem. 1990, 33, 534–542. DOI:10.1021/jm00164a011. (g) Chakravarty, P. K.; Greenlee, W. J.; Parsons, W. H.; Patchett, A. A.; Combs, P.; Roth, A.; Busch, R. D.; Mellin, T. N. (3-Amino-2-oxoalkyl)phosphonic Acids and Their Analogs as Novel Inhibitors of D-Alanine:D-alanine Ligase. J. Med. Chem. 1989, 32, 1886–1890. DOI:10.1021/jm00128a033.
  • Simoni, D.; Invidiata, F. P.; Manferdini, M.; Lampronti, I.; Rondanin, R.; Roberti, M.; Pollini, G. P. Tetramethylguanidine (TMG)-Catalyzed Addition of Dialkyl Phosphites to α,β-Unsaturated Carbonyl Compounds, Alkenenitriles, Aldehydes, Ketones and Imines. Tetrahedron Lett 1998, 39, 7615–7618. DOI:10.1016/S0040-4039(98)01656-6.
  • Blazis, V. J.; Koeller, K. J.; Spilling, C. D. Reactions of Chiral Phosphorous Acid Diamides: The Asymmetric Synthesis of Chiral.alpha.-Hydroxy Phosphonamides, Phosphonates, and Phosphonic Acids. J. Org. Chem. 1995, 60, 931–940. DOI:10.1021/jo00109a025.
  • Heydari, A.; Arefi, A.; Khaksar, S.; Tajbakhsh, M. Hydrophosphonylation of Aldehydes Catalyzed by Guanidine Hydrochloride in Water. Catal. Commun 2006, 7, 982–984. DOI:10.1016/j.catcom.2006.04.014.
  • Pamies, O.; Backvall, J. E. An Efficient Route to Chiral α- and β-Hydroxyalkanephosphonates. J. Org. Chem 2003, 68, 4815–4818. DOI:10.1021/jo026888m.
  • Kulkarni, M. A.; Lad, U. P.; Desai, U. V.; Mitragotri, S. D.; Wadgaonkar, P. P. Mechanistic Approach for Expeditious and Solvent-Free Synthesis of α-Hydroxy Phosphonates Using Potassium Phosphate as Catalyst. C. R. Chimie 2013, 16, 148–152. DOI:10.1016/j.crci.2012.10.009.
  • Jeanmaire, T.; Hervaud, Y.; Boutevin, B. Synthesis of Dialkyl-Hydroxymethylphosphonates in Heterogeneous Conditions. Phosphorus Sulfur Silicon Relat. Elem 2002, 177, 1137–1145. DOI:10.1080/10426500211718.
  • Martinez-Castro, E.; Lopez, O.; Maya, I.; Fernandez-Balanos, J. G.; Petrini, M. A Green Procedure for the Regio- and Chemoselective Hydrophosphonylation of Unsaturated Systems Using CaO under Solventless Conditions. Green Chem. 2010, 12, 1171–1174. DOI:10.1039/c0gc00026d.
  • Keglevich, G.; Toth, V. R.; Drahos, L. Microwave‐Assisted Synthesis of α‐Hydroxy‐Benzylphosphonates and ‐Benzylphosphine Oxides. Heteroatom Chem. 2011, 22, 15–17. DOI:10.1002/hc.20649.
  • Dolle, R. E.; Herpin, T. F.; Shimshock, Y. C. Solid-Phase Synthesis of α-Hydroxy Phosphonates and Hydroxystatine Amides. Transition-State Isosteres Derived from Resin-Bound Amino Acid Aldehydes. Tetrahedron Lett 2001, 42, 1855–1858. DOI:10.1016/S0040-4039(01)00097-1.
  • Textier-Boullet, F.; Lequitte, M. An Unexpected Reactivity of Simple Heterogeneous Mixture of γ-Alumina and Potassium Fluoride: 1-Hydroxyalkane Phosphonic Esters Synthesis from Non-Activated Ketones in “Dry Media. Tetrahedron Lett 1986, 27, 3515–3516. DOI:10.1016/S0040-4039(00)84837-6.
  • Alexander, C. W.; Albiniak, P. A.; Gibson, L. R. Synthesis of α-Hydroxy Phosphonates Using a Solid Supported Base. Phosphorus Sulfur Silicon Relat. Elem 2000, 167, 205–209. DOI:10.1080/10426500008082399.
  • Sardarian, A. R.; Kaboudin, B. Surface-Mediated Solid Phase Reactions: Preparation of Diethyl 1-Hydroxyarylmethylphosphonates on the Surface of Magnesia. Synth. Commun 1997, 27, 543–551. DOI:10.1080/00397919708003324.
  • Simoni, D.; Rondanin, R.; Morini, M.; Baruchello, R.; Invidiata, F. P. 1,5,7-Triazabicyclo[4.4.0]Dec-1-Ene (TBD), 7-methyl-TBD (MTBD) and the Polymer-Supported TBD (P-TBD): Three Efficient Catalysts for the Nitroaldol (Henry) Reaction and for the Addition of Dialkyl Phosphites to Unsaturated Systems. Tetrahedron Lett 2000, 41, 1607–1610. DOI:10.1016/S0040-4039(99)02340-0.
  • Tajbakhsh, M.; Heydari, A.; Khalilzadeh, M.; Lakouraj, M.; Zamenian, B.; Khaksar, S. Amberlyst-15 as a Heterogeneous Reusable Catalyst for the Synthesis of α-Hydroxy Phosphonates in Water. Synlett 2007, 2007, 2347–2350. DOI:10.1055/s-2007-985595.
  • Shinde, P. V.; Kategaonkar, A. H.; Shingate, B. B.; Shingare, M. S. An Organocatalyzed Facile and Rapid Access to α-Hydroxy and α-Amino Phosphonates under Conventional/Ultrasound Technique. Tetrahedron Lett 2011, 52, 2889–2892. DOI:10.1016/j.tetlet.2011.03.138.
  • Vahdat, S. M.; Baharfar, R.; Tajbakhsh, M.; Heydari, A.; Baghbanian, S. M.; Khaksar, S. Organocatalytic Synthesis of α-Hydroxy and α-Aminophosphonates. Tetrahedron Lett 2008, 49, 6501–6504. DOI:10.1016/j.tetlet.2008.08.094.
  • Santhisudha, S.; Sreelakshmi, P.; Jayaprakash, S. H.; Kumar, B. V.; Reddy, C. S. Silica-Supported Tungstic Acid Catalyzed Synthesis and Antioxidant Activity of α-Hydroxyphosphonates. Phosphorus Sulfur Silicon Relat. Elem 2015, 190, 1479–1488. DOI:10.1080/10426507.2014.991825.
  • (a) Kharasch, M. S.; Mosher, R. A.; Bengelsdorf, I. S. Organophosphorus Chemistry. Addition Reactions of Diethyl phosphonate and the Oxidation of Triethyl phosphate. J. Org. Chem. 1960, 25, 1000–1006. DOI:10.1021/jo01076a035. (b) Goldeman, W.; Soroka, M.; Wrocawska, P. The Preparation of Dialkyl 1-hydroxyalkylphosphonates in the Reaction of Trialkyl phosphites with Oxonium Salts Derived from Aldehydes or Ketones. Synthesis 2006, 3019–3024. DOI:10.1055/s-2006-950200. (c) Congsiglio, G.; Failla, S.; Finocchiaro, P. A General Synthetic Approach to α-Hydroxy Phosphoryl Compounds. Phosphorus Sulfur Silicon Relat. Elem. 1996, 117, 37–54. DOI:10.1080/10426509608038773.
  • de Noronha, R. G.; Costa, P. J.; Romao, C. C.; Calhorda, M. J.; Fernandes, A. C. MoO2Cl2 as a Novel Catalyst for C − P Bond Formation and for Hydrophosphonylation of Aldehydes. J. Organometallics 2009, 28, 6206–6212. DOI:10.1021/om9005627.
  • Yokomatsu, T.; Yamagishi, T.; Shibuya, S. Enantioselective Synthesis of α-Hydroxyphosphonates through Asymmetric Pudovik Reactions with Chiral Lanthanoid and Titaniumalkoxides. J. Chem. Soc, Perkin Trans. 1997, 1, 1527–1534. DOI:10.1039/a608161d.
  • Olah, G. A.; Wu, A. Synthetic Methods and Reactions. 159. Preparation of 1,2-Diketones from Nonenolizable Aliphatic and Aromatic Acyl Chlorides with Diethyl 1-Alkyl(Aryl)-1-(Trimethylsiloxy)-Methanephosphonates. J. Org. Chem. 1991, 56, 902–904. DOI:10.1021/jo00002a085.
  • Sonar, S. S.; Kategaonkar, A. H.; Ware, M. N.; Gill, C. H.; Shingate, B. B.; Shingare, M. S. Ammonium Metavanadate: An Effective Catalyst for Synthesis of α-Hydroxyphosphonates. Arkivoc 2009, 2009, 138–148. DOI:10.3998/ark.5550190.0010.215.
  • Wu, Q.; Zhou, J.; Yao, Z.; Xu, F.; Shen, Q. Lanthanide Amides [(Me3Si)2N]3Ln(μ-Cl)Li(THF)3 Catalyzed Hydrophosphonylation of Aryl Aldehydes. J. Org. Chem. 2010, 75, 7498–7501. DOI:10.1021/jo101743e.
  • Liu, C.; Qian, Q.; Nie, K.; Wang, Y.; Shen, Q.; Yuan, D.; Yao, Y. Lanthanide Anilido Complexes: Synthesis, Characterization, and Use as Highly Efficient Catalysts for Hydrophosphonylation of Aldehydes and Unactivated Ketones. Dalton Trans. 2014, 43, 8355–8362. DOI:10.1039/c4dt00522h.
  • Liu, C.; Zhang, Y.; Qian, Q.; Yuan, D.; Yao, Y. n. BuLi as a Highly Efficient Precatalyst for Hydrophosphonylation of Aldehydes and Unactivated Ketones. Org. Lett. 2014, 16, 6172–6175. DOI:10.1021/ol5030713.
  • (a) Nie, K.; Liu, C.; Zhang, Y.; Yao, Y. Syntheses of Bimetallic Rare-earth Bis(cyclopentadienyl) Derivatives Supported by Bridged Bis(guanidinate) Ligands and their Catalytic Property for the Hydrophosphonylation of Aldehydes. J. Organomet. Chem. 2016, 804, 59–65. DOI:10.1016/j.jorganchem.2015.12.033. (b) Nie, K.; Liu, C.; Zhang, Y.; Yao, Y. Syntheses of Bimetallic Lanthanide Bis(amido) Complexes Stabilized by Bridged Bis(guanidinate) Ligands and Their Catalytic Activity Toward the Hydrophosphonylation Reaction of Aldehydes and Ketones. Sci China Chem. 2015, 58, 1451–1460. DOI:10.1007/s11426-015-5407-9.
  • Yokomatsu, T.; Yoshida, Y.; Shibuya, S. Stereoselective Synthesis of.beta.-Oxygenated.alpha.-Hydroxyphosphonates by Lewis Acid-Mediated Stereoselective Hydrophosphonylation of.alpha.-Benzyloxy Aldehydes. An Application to the Synthesis of Phosphonic Acid Analogs of Oxyamino Acids. J. Org. Chem. 1994, 59, 7930–7933. DOI:10.1021/jo00104a064.
  • (a) Dhara, D.; Gayen, K. S.; Khamarui, S.; Pandit, P.; Ghosh, S.; Maiti, D. K. CeCl3·7H2O Catalyzed C–C and C–N Bond-forming Cascade Cyclization with Subsequent Side-chain Functionalization and Rearrangement: A Domino Approach to Pentasubstituted Pyrrole Analogues. J. Org. Chem. 2012, 77, 10441–10449. DOI:10.1021/jo301796r. (b) Jafari, A. A.; Nazarpour, M.; Abdollahi-Alibeik, M. CeCl3·7H2O‐catalyzed One‐pot Kabachnik–Fields Reaction: A Green Protocol for Three‐component Synthesis of α‐Aminophosphonates. Heteroatom Chem. 2010, 21, 397–403. DOI:10.1002/hc.20635. (c) Khan, A. T.; Choudhury, L. H.; Parvin, T.; Ali, M. A. CeCl3·7H2O: An Efficient and Reusable Catalyst for the Preparation of β-Acetamido Carbonyl Compounds by Multi-component Reactions (MCRs). Tetrahedron Lett. 2006, 47, 8137–8141. DOI:10.1016/j.tetlet.2006.09.041. (d) Silveira, C. C.; Mendes, S. R.; Líbero, F. M.; Lenardão, E. J.; Perin, G. Glycerin and CeCl3·7H2O: A New and Efficient Recyclable Medium for the Synthesis of Bis(indolyl)methanes. Tetrahedron Lett. 2009, 50, 6060–6063. DOI:10.1016/j.tetlet.2009.08.062. (e) Sabitha, G.; Arundhathi, K.; Sudhakar, K.; Sastry, B. S.; Yadav, J. S. CeCl3·7H2O-Catalyzed Synthesis of 1-Oxo-hexahydroxanthene Derivatives in Aqueous Media. Synthetic Commun. 2008, 38, 3439–3446. DOI:10.1080/00397910802154253.
  • (a) Kanagaraj, K.; Pitchumani, K. Solvent-free Multicomponent Synthesis of Pyranopyrazoles: Per-6-amino-β-cyclodextrin as a Remarkable Catalyst and Host. Tetrahedron Lett. 2010, 51, 3312–3316. DOI:10.1016/j.tetlet.2010.04.087. (b) Singh, M. S.; Chowdhury, S. Recent Developments in Solvent-free Multicomponent Reactions: A Perfect Synergy for Eco-compatible Organic Synthesis. RSC Adv. 2012, 2, 4547–4592. DOI:10.1039/C2RA01056A.
  • (a) Kour, P.; Kumar, A.; Rai, V. K. Aqueous Microwave-assisted DMAP Catalyzed Synthesis of β-Phosphonomalonates and 2-Amino-4H-chromen-4-ylphosphonates via a Domino Knoevenagel-phospha-Michael Reaction C. R. Chimie 2017, 20, 140–145. DOI:10.1016/j.crci.2016.05.013. (b) Kour, P.; Kumar, A.; Sharma, R.; Chib, R.; Khan, I. A.; Rai, V. K. Synthesis of 2-Amino-4H-chromen-4-ylphosphonates and β-Phosphonomalonates via Tandem Knoevenagel–Phospha-Michael Reaction and Antimicrobial Evaluation of Newly Synthesized β-Phosphonomalonates. Res Chem Int. 2017, 43, 7319–7329. DOI:10.1007/s11164-017-3077-2. (c) Kumar, A.; Jamwal, S.; Khan, S.; Singh, N.; Rai, V. K. Bi(NO3)3.5H2O Catalyzed Phosphonylation of Aldehydes: An Efficient Route to α-Hydroxyphosphonates. Phosphorus Sulfur Silicon Relat. Elem. 2017, 192, 381–385. DOI:10.1080/10426507.2016.1247085. (d) Kour, P.; Singh, V. P.; Khajuria, B.; Singh, T.; Kumar, A. Al(III) Chloride Catalyzed Multi-component Domino Strategy: Synthesis of Library of Dihydrotetrazolo[1,5-a]pyrimidines and Tetrahydrotetrazolo[1,5-a]quinazolinones. Tetrahedron Lett. 2017, 58, 4179–4185. DOI:10.1016/j.tetlet.2017.09.052. (e) Singh, N.; Kumar, A.; Rai, V. K. Aqueous Mortar–pestle Grinding: An Efficient, Attractive, and Viable Technique for the Regioselective Synthesis of β-Amino Alcohols. C. R. Chimie 2018, 21, 71–79. DOI:10.1016/j.crci.2017.11.004.
  • Pokalwar, R. U.; Hangarge, R. V.; Maske, P. V.; Shingare, M. S. Synthesis and Antibacterial Activities of α-Hydroxyphosphonates and α-Acetyloxyphosphonates Derived from 2-Chloroquinoline-3-Carbaldehyde. Arkivoc 2006, 2006, 196–204. DOI:10.3998/ark.5550190.0007.b20.
  • Verbicky, C. A.; Zercher, C. K. Zinc-Mediated Chain Extension of β-Keto Phosphonates. J. Org. Chem. 2000, 65, 5615–5622. DOI:10.1021/jo000343f.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.