183
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Silica-supported tungstic acid (STA): A recyclable catalyst for the synthesis of 1H-indazolo [1,2-b]phthalazine-trione and spiro-triazolo[1,2-a]indazole-tetraone derivatives under solvent-free condition

, & ORCID Icon
Pages 201-210 | Received 02 Jul 2019, Accepted 26 Aug 2019, Published online: 06 Sep 2019

References

  • Toure, B. B.; Hall, D. G. Natural Product Synthesis Using Multicomponent Reaction Strategies. Chem. Rev. 2009, 109, 4439–4486. DOI: 10.1021/cr800296p.
  • Bondock, S.; Fadaly, W.; Metwally, M. A. Recent Trends in the Chemistry of 2-Aminobenz-Othiazoles. J. Sulfur Chem. 2009, 30, 74–107. DOI: 10.1080/17415990802588033.
  • Ganem, B. Strategies for Innovation in Multicomponent Reaction Design. Acc. Chem. Res. 2009, 42, 463–472. DOI: 10.1021/ar800214s.
  • Erlanson, D. A.; McDowell, R. S.; O'Brien, T. Fragment-Based Drug Discovery. J. Med. Chem. 2004, 47, 3463–3483. DOI: 10.1021/jm040031v.
  • (a) Keivanloo, A.; Kazemi, S.S.; Nasr-Isfahani, H.; Bamoniri, A. Novel multi-component synthesis of 1,4-disubstituted pyrrolo[1,2-a]quinoxalines through palladium-catalyzed coupling reaction/hetero-annulation in water. Tetrahedron. 2016, 72, 6536–6542. DOI: 10.1016/j.tet.2016.08.067. (b) Hajduk, P. J.; Greer, J. A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov. 2007, 6, 211–219. DOI: 10.1038/nrd2220.
  • (a) Morteza S. Indoles in Multicomponent Processes (MCPs). Chem. Rev. 2012, 112, 3508–3549. DOI: 10.1021/cr2003954. (b) Jadhav, A. M.; Kim, Y. I.; Lim, K. T.; Jeong, Y. T. Application of p-TSA in the one pot synthesis of N-methyl-3-nitro-aryl-benzo[4,5]imidazo[1,2-a]pyrimidin-2-amine. Tetrahedron Lett. 2018, 59, 554–557. DOI: 10.1016/j.tetlet.2018.01.008.
  • (a) Zhang, X. N.; Dong, X.; Wei, Y.; Shi, M. Access to 2′,3′-Dihydro-1′H-spiro[indoline-3,4′-pyridin]-2-ones via Amino Acid Derived Phosphine-Catalyzed Asymmetric [4 + 2] Annulation with Easily Available Oxindole-derived α,β-unsaturated Imines. Tetrahedron, 2014, 70, 2838–2846. DOI: 10.1016/j.tet.2014.02.052.
  • (a) Jiang, B.; Cao, L. J.; Tu, S. J.; Zheng W. R.; Yu, H. Z. Highly Diastereoselective Domino Synthesis of 6-Spirosubstituted Pyrido[2,3-d]pyrimidine Derivatives in Water. J. Comb. Chem. 2009, 11, 612–616. DOI: 10.1021/cc900038g. (b) Jadhav, A. M.; Balwe, S. G.; Lim, K. T.; Jeong, Y. T. A Novel Three-Component Method for the Synthesis of Spiro[chromeno [4′,3′:4,5] pyrimido[1,2-b] indazole-7,3′-indoline]-2′,6(9H)-dione. Tetrahedron 2017, 73, 2806–2813. DOI: 10.1016/j.tet.2017.03.084.
  • (a) Krmakar, R.; Kayal, U.; Bhattacharya B.; Maiti, G. One-pot Three-Component Reaction for the Synthesis of Biologically Important spiro[benzo[f]quinoline-3,3′-indoline] derivatives. Tetrahedron Lett. 2014, 55, 1370–1372. DOI: 10.1016/j.tetlet.2014.01.028. (b) Balwe, S. G.; Lim, K. T.; Cho, B. G.; Jeong, Y. T. One-pot Four-Component Domino Reaction for the Synthesis of Bifunctionalized Spiro[indazolo[3,2-b]quinazoline-7,3′-indoline Hybrids: A Green Approach. Syn. Comm. 2019, 49, 602–610. DOI: 10.1080/00397911.2019.
  • Singh, H.; Sindhu, J.; Khurana, J. M.; Sharma, C.; Aneja, K. R. Ultrasound Promoted One Pot Synthesis of Novel Fluorescent Triazolyl Spirocyclic Oxindoles Using DBU Based Task Specific Ionic Liquids and Their Antimicrobial Activity. Eur. J. Med. Chem. 2014, 77, 145–154. DOI: 10.1016/j.ejmech.2014.03.016.
  • Sivakumar, S.; Kumar, R. R.; Ali, M. A.; T.; Choon, T. S. An Atom Economic Synthesis and AChE Inhibitory Activity of Novel Dispiro 7-Aryltetrahydro-1H-Pyrrolo[1,2-c][1,3]Thiazole and 4-Aryloctahydroindolizine N-Methylpiperidin-4-One Hybrid Heterocycles. Eur. J. Med. Chem. 2013, 65, 240–248. DOI: 10.1016/j.ejmech.2013.04.050.
  • (a) Kumar, R. R.; Perumal, S.; Senthilkumar, P.; Yogeeswari, P.; Sriram, D. A Highly Atom Economic, Chemo-, Regio- and Stereoselective Synthesis, and Discovery of Spiro-pyrido-pyrrolizines and Pyrrolidines as Antimycobacterial Agents. Tetrahedron. 2008, 64, 2962–2971. DOI: 10.1016/j.tet.2008.01.072 (b) Wei, A. C.; Ali, M. A.; Yoon, Y. K.; Ismail, R.; Choon, T. S.; Kumar, R. S. A Facile Three-component [3 + 2]-cycloaddition for the Regioselective Synthesis of Highly Functionalised Dispiropyrrolidines Acting as Antimycobacterial Agents. Bioorg. Med. Chem. Lett. 2013, 23, 1383–1386. DOI: 10.1016/j.bmcl.2012.12.069..
  • Chebanov, V. A.; Saraev, V. E.; Desenko, S. M.; Chernenko, V. N.; Shishkina, S. V.; Shishkin, O. V.; Kobzar, K. M.; Kappe, C. O. One-Pot, Multicomponent Route to Pyrazoloquinolizinones. Org. Lett. 2007, 9, 1691–1694. DOI: 10.1021/ol070411l.
  • Kumar, R. R.; Perumal, S.; Manju, S. C.; Bhatt, P.; Yogeeswari, P.; Sriram, D. An Atom Economic Synthesis and Antitubercular Evaluation of Novel Spiro-Cyclohexanones. Bioorg. Med. Chem. Lett. 2009, 19, 3461–3465. DOI: 10.1016/j.bmcl.2009.05.018.
  • Bhaskar, G.; Arun, Y.; Balachandran, C.; Saikumar, C.; Perumal, P. T. Synthesis of Novel Spirooxindole Derivatives by One Pot Multicomponent Reaction and Their Antimicrobial Activity. Eur. J. Med. Chem. 2012, 51, 79–91. DOI: 10.1016/j.ejmech.2012.02.024.
  • (a) Senwar, K. R.; Sharma, P.; Reddy, T. S.; Jeengar, M. K.; Nayak, V. L.; Naidu, V. G. M.; Kamal A.; Shankaraiah, N. Spirooxindole-derived Morpholine-fused-1,2,3-triazoles: Design, Synthesis, Cytotoxicity and Apoptosis Inducing Studies. Eur. J. Med. Chem. 2015, 102, 413–424. DOI: 10.1016/j.ejmech.2015.08.017. (b) Wang, H. J.; Pan, B. W.; Zhang, W. H.; Yang, C.; Liu, X. L.; Zhao, Z.; Feng, T. T.; Zhou, Y.; Yuan, W. C. A Facile and Efficient Synthesis of Polycyclic Spiropyrrolidine Oxindoles Bearing Mesityl Oxide Unit via a Three-component 1,3-dipolar Cycloaddition Reaction. Tetrahedron. 2015, 71, 8131–8139. DOI: 10.1016/j.tet.2015.08.041.
  • Rajanarendar, E.; Ramakrishna, S.; Reddy, K. G.; Nagaraju, D.; Reddy, Y. N. A Facile Synthesis, anti-Inflammatory and Analgesic Activity of Isoxazolyl-2,3-Dihydrospiro[Benzo[f]Isoindole-1,3′-Indoline]-2′,4,9-Triones. Bioorg. Med. Chem. Lett. 2013, 23, 3954–3958. DOI: 10.1016/j.bmcl.2013.04.053.
  • Palomba, M.; Rossi, L.; Sancineto, L.; Tramontano, E.; Corona, A.; Bagnoli, L.; Santi, C.; Pannecouque, C.; Tabarrini, O.; Marini, F. A New Vinyl Selenone-Based Domino Approach to Spirocyclopropyl Oxindoles Endowed with anti-HIV RT Activity. Org. Biomol. Chem. 2016, 14, 2015–2024. DOI: 10.1039/C5OB02451J.
  • (a) Craig, P.N.; Comprehensive Medicinal Chemistry; Drayton, C. J.; Ed., Pergamon: New York, NY, v.8, 1991; (b) Balwe, S.G.; Jeong, Y.T.; Org. Chem. Front., 2018, 5, 1628–1632; (c) Balwe, S.G.; Jeong, Y.T.; Org. Biomol. Chem., 2018, 16, 1287–1296.
  • Izydore, R. A.; Hall, I. H. U.S. Patent 4, 866, 058, file date, Sep. 12, 1989; Chem. Abstr., 112, 151876X, 1990.
  • Wakabayashi, O.; Matsuya, K.; Ohta, H.; Jikihara, T.; Suzuki, S. Ger Offen. 2,526,358 Jpn.; Chem. Abstr. 1976, 84, 135700h.
  • Ovadia, D.; Peleg, N.; P. U.S. Patent, B. U.S. Patent 4,087,534; Chem. Abstr. 1978, 89, 109513h.
  • Giesecke, H.; Merten, R.; Rottmaier, L. Ger Offen. DE 3,027,612; file date, Feb. 18, 1985; Chem. Abstr., 96, 182879f, 1982.
  • (a) Kiriazis, A.; Ruffer, T.; Jantti, S.; Lang, H.; Yli-Kauhaluama, J. Stereoselective Aza Diels − Alder Reaction on Solid Phase: A Facile Synthesis of Hexahydrocinnoline Derivatives J. Comb. Chem. 2007, 9, 263–266. DOI: 10.1021/cc060125l. (b) Abdel-Rahman, A. H.; Keshk, E. M.; Hanna, M. A.; El-Bady, S. M. Synthesis and Evaluation of Some New Spiro Indoline-based Heterocycles as Potentially Active antimicrobial Agents. Bioorg. Med. Chem. 2006, 12, 2483–2488. DOI: 10.1016/j.bmc.2003.10.063. (c) Kang, T.-H.; Matsumoto, K.; Murakami, Y.; Takayama, H.; Kitajima, M.; Aimi, N.; Watanabe, H. Pteropodine and Isopteropodine Positively Modulate the Function of Rat Muscarinic M1 and 5-HT2 Receptors Expressed in Xenopus Oocyte. Eur. J. Pharmacol. 2002, 444, 39–45. DOI: 10.1016/S0014-2999(02)01608-4. (d) Ma, J.; Hecht, S. M. Javaniside, A Novel DNA Cleavage Agent from Alangium javanicum having an Unusual Oxindole Skeleton. Chem. Commun. 2004, 1190–1191. DOI: 10.1039/B402925A. (e) Khafagy, M. M.; El-Wahas, A. H. F. A.; Eid, F. A.; El-Agrody, A. M. Synthesis of halogen derivatives of benzo[h]chromene and benzo[a]anthracene with promising antimicrobial activities. Farmaco 2002, 57, 715–722. DOI: 10.1016/S0014-827X(02)01263-6. (f) Grasso, S.; De Sarro, G.; De Sarro, A.; Micale, N.; Zappala, M.; Puia, G.; Baraldi, M.; De Micheli, C. Synthesis and Anticonvulsant Activity of Novel and Potent 6,7-Methylenedioxyphthalazin-1(2H)-ones. J. Med. Chem. 2000, 43, 2851–2859. DOI: 10.1021/jm001002x.
  • (a) Azarifar, D.; Nejat-Yami, R.; Akrami, Z.; Sameria, F.; Samadib, S. Tetrakis(acetonitrile)copper(I) Hexafluorophosphate as an Efficient Catalyst for the Synthesis of Triazolo[1,2-a]indazole-1,3,8-trione and 2H-indazolo[2,1-b]phthalazine-trione Derivatives. Lett. Org. Chem. 2012, 9, 128–132. DOI: 10.2174/157017812800221807. (b) Kiasat, A.R.; Davarpanah, J. Fe3O4@silica Sulfuric Acid Nanoparticles: An Efficient Reusable nanomagnetic Catalyst as Potent Solid Acid for One-pot Solvent-free Synthesis of Indazolo[2,1-b]phthalazine-triones and pyrazolo[1,2-b]phthalazine-diones. J. Mol. Cat. A: Chem. 2013, 373, 46–54. DOI: 10.1016/j.molcata.2013.03.003.
  • Solid supported acid catalyst (a) Kalla, R. M. N.; Kim, M. R.; Kim, Y. N.; Kim, I. Tungstosulfonic Acid as an Efficient Solid Acid Catalyst for Acylal Synthesis for the Protection of the Aldehydic Carbonyl Group. New J. Chem. 2016, 40, 687–693. DOI: 10.1039/C5NJ02.697K. (b) Tabrizian, E.; Amoozadeh, A. A Highly Efficient and Recyclable Silica-supported Tungstic Acid (STA) Catalyst for the Synthesis of Pyrano[3,2-c]chromen-5-ones Under Solvent Free Conditions. RSC Adv. 2016, 6, 96606–96615. DOI: 10.1016/j.tet.2017.07.008. (c) Sharma, P.; Gupta, M. Silica Functionalized Sulphonic Acid Coated with Ionic Liquid: An efficient And Recyclable Heterogeneous Catalyst for the One-pot Synthesis of 1,4-dihydropyridines under Solvent-Free Conditions. Green Chem. 2015, 17, 1100–1106. DOI: 10.1039/C4GC00923A.
  • (a) Karami, B.; Ghashghaee, V.; Khodabakhshi, S. Novel Silica Tungstic Acid (STA): Preparation, Characterization and its First Catalytic application in Synthesis of New Benzimidazoles. Catal. Commun. 2012, 20, 71–75. DOI: 10.1016/j.catcom.2012.01.012. (b) Khodabakhshi, S.; Karami, B. A Rapid and Eco-Friendly Synthesis of Novel and Known Benzopyrazines Using Silica Tungstic Acid (STA) as a New And Recyclable Catalyst. Catal. Sci. Technol. 2012, 2, 1940–1944. DOI: 10.1039/C2CY20227A.
  • (a) Balwe, S. G.; Jeong, Y. T. Iron-catalyzed Unprecedented Formation of Benzo[d]imidazo [2,1-b]thiazoles Under Solvent-free Conditions. RSC Adv. 2016, 6, 107225–107232. DOI: 10.1039/C6RA24183B. (b) Balwe, S. G.; Lim, K. T.; Cho, B. G.; Jeong, Y. T. A Pot-economical and Green Synthesis of Novel (benzo[d]imidazo[2,1-b]thiazol-3-yl)-2H-chromen-2-one in Ethanol–PEG-600 under Catalyst-free Conditions. Tetrahedron. 2017, 73, 3564–3570. DOI: 10.1016/j.tet.2017.05.047. (c) Balwe, S. G.; Shinde, V. V.; Jeong, Y. T. Iron-Catalyzed Microwave-Promoted Expeditious One-pot Synthesis of Benzo[b][1,4]thiazine-4-carbonitrile under Solvent-free Condition. Tetrahedron Lett. 2016, 57, 5074–5078. DOI: 10.1016/j.tetlet.2016.10.002. (d) Balwe, S. G.; Shinde, V. V.; Rokade, A. A.; Park, S. S.; Jeong, Y. T. Green Synthesis and Characterization of Silver Nanoparticles (Ag NPs) from Extract of Plant Radix Puerariae: An Efficient and Recyclable Catalyst for the Construction of Pyrimido[1,2-b]indazole Derivatives under Solvent-Free Conditions. Catal. Commun. 2017, 99, 121–126. DOI: 10.1016/j.catcom.2017.06.006. (e) Balwe, S. G.; Kim, J. S.; Kim, Y. I.; Jeong, Y. T. Diversity-oriented one-pot synthesis of furan based densely substituted biheteroaryls via isocyanide insertion. Tetrahedron 2019, 75, 797–807. DOI: 10.1016/j.tet.2018.12.066. (f) Jadhav, A. M.; Balwe, S. G.; Kim, J. S.; Lim, K. T.; Jeong, Y. T. Indium(III)chloride Catalyzed Synthesis of Novel 1H-pyrazolo[1,2-b]phthalazine-5,10-diones and 1H-Pyrazolo[1,2-a]pyridazine-5,8-diones under Solvent-free Condition. Tetrahedron Lett. 2019, 60, 560–565. DOI: 10.1016/j.tetlet.2019.01.028. (g) Balwe, S. G.; Rokade, A. A.; Park, S. S.; Jeong, Y. T. Green Synthesis and Characterization of Supported Gold Nanoparticles (Au@PS) from Schisandra chinensis Fruit Extract: An Efficient and Reusable Catalyst for the Synthesis of Chromeno[2,3-d]pyrimidin-2-yl)phenol Derivatives Under Solvent-free Conditions. Catal. Commun. 2019, 128, 105703. DOI: 10.1016/j.catcom.2019.05.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.