99
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Diiron butane-1,2-dithiolate complexes with tris(4-chlorophenyl)phosphine or tris(4-methoxyphenyl)phosphine: synthesis, characterization, X-ray crystal structures, and electrochemistry

, , , , , ORCID Icon, , ORCID Icon & show all
Pages 249-255 | Received 27 Jun 2019, Accepted 25 Oct 2019, Published online: 04 Nov 2019

References

  • Gloaguen, F.; Rauchfuss, T. B. Small Molecule Mimics of Hydrogenases: Hydrides and Redox. Chem. Rev. 2009, 38, 100–108. DOI: 10.1039/B801796B.
  • Tard, C.; Pickett, C. J. Structural and Functional Analogues of the Active Sites of the [Fe]-, [NiFe]-, and [FeFe]-Hydrogenases. Chem. Rev. 2009, 109, 2245–2274. DOI: 10.1021/cr800542q.
  • Lubitz, W.; Ogata, H.; Rüdiger, O.; Reijerse, E. Hydrogenases. Chem. Rev. 2014, 114, 4081–4148. DOI: 10.1021/cr4005814.
  • Rauchfuss, T. B. Diiron Azadithiolates as Models for the [FeFe]-Hydrogenase Active Site and Paradigm for the Role of the Second Coordination Sphere. Acc. Chem. Res. 2015, 48, 2107–2116. DOI: 10.1021/acs.accounts.5b00177.
  • Li, Y.; Rauchfuss, T. B. Synthesis of Diiron(I) Dithiolato Carbonyl Complexes. Chem. Rev. 2016, 116, 7043–7077. DOI: 10.1021/acs.chemrev.5b00669.
  • Cammack, R. Hydrogenase Sophistication. Nature 1999, 397, 214–215. DOI: 10.1038/16601.
  • Frey, M. Hydrogenases: Hydrogen-Activating Enzymes. ChemBioChem. 2002, 3, 153–160. DOI: 10.1002/1439-7633(20020301)3:2/3 < 153::AID-CBIC153 > 3.0.CO;2-B.
  • Schmidt, M.; Contakes, S. M.; Rauchfuss, T. B. First Generation Analogues of the Binuclear Site in the Fe-Only Hydrogenases: Fe2(μ-SR)2(CO)4(CN)22‒. J. Am. Chem. Soc. 1999, 121, 9736–9737. DOI: 10.1021/ja9924187.
  • Lyon, E. J.; Georgakaki, I. P.; Reibenspies, J. H.; Darensbourg, M. Y. Coordination Sphere Flexibility of Active-Site Models for Fe-Only Hydrogenase: Studies in Intra- and Intermolecular Diatomic Ligand Exchange. J. Am. Chem. Soc. 2001, 123, 3268–3278. DOI: 10.1021/ja003147z.
  • Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C. X-Ray Crystal Structure of the Fe-Only Hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Angstrom Resolution. Science 1998, 282, 1853–1857. DOI: 10.1126/science.282.5395.1853.
  • Nicolet, Y.; Piras, C.; Legrand, P.; Hatchikian, C. E.; Fontecilla-Camps, J. C. Desulfovibrio Desulfuricans Iron Hydrogenase: The Structure Shows Unusual Coordination to an Active Site Fe Binuclear Center. Structure 1999, 7, 13–23. DOI: 10.1016/S0969-2126(99)80005-7.
  • Fan, H. J.; Hall, M. B. A Capable Bridging Ligand for Fe-Only Hydrogenase: Density Functional Calculations of a Low-Energy Route for Heterolytic Cleavage and Formation of Dihydrogen. J. Am. Chem. Soc. 2001, 123, 3828–3829. DOI: 10.1021/ja004120i.
  • Razavet, M.; Davies, S. C.; Hughes, D. L.; Pickett, C. J. {2Fe3S} Clusters Related to the Di-Iron Sub-Site of the H-Centre of All-Iron Hydrogenases. Chem. Commun. 2001, 847–848. DOI: 10.1039/b102244j.
  • Lawrence, J. D.; Li, H.; Rauchfuss, T. B.; Bénard, M.; Rohmer, M. M. Diiron Azadithiolates as Models for the Iron-Only Hydrogenase Active Site: Synthesis, Structure, and Stereoelectronics. Angew. Chem. Int. Ed. 2001, 40, 1768–1771. DOI: 10.1002/1521-3773(20010504)40:9 < 1768::AID-ANIE17680 > 3.0.CO;2-E.
  • Lyon, E. J.; Georgakaki, I. P.; Reibenspies, J. H.; Darensbourg, M. Y. Carbon Monoxide and Cyanide Ligands in a Classical Organometallic Complex Model for Fe-Only Hydrogenase. Angew. Chem. Int. Ed. 1999, 38, 3178–3180. DOI: 10.1002/(SICI)1521-3773(19991102)38:21 < 3178::AID-ANIE3178 > 3.0.CO;2-4.
  • Mejia-Rodriguez, R.; Chong, D.; Reibenspies, J. H.; Soriaga, M. P.; Darensbourg, M. Y. The Hydrophilic Phosphatriazaadamantane Ligand in the Development of H2 Production Electrocatalysts: Iron Hydrogenase Model Complexes. J. Am. Chem. Soc. 2004, 126, 12004–12014. DOI: 10.1021/ja039394v.
  • Gao, W.; Ekström, J.; Liu, J.; Chen, C.; Eriksson, L.; Weng, L.; Åkermark, B.; Sun, L. Binuclear Iron-Sulfur Complexes with Bidentate Phosphine Ligands as Active Site Models of Fe-Hydrogenase and Their Catalytic Proton Reduction. Inorg. Chem. 2007, 46, 1981–1991. DOI: 10.1021/ic0610278.
  • Ezzaher, S.; Capon, J. F.; Gloaguen, F.; Pétillon, F.; Schollhammer, P.; Talarmin, J. Electron-Transfer-Catalyzed Rearrangement of Unsymmetrically Substituted Diiron Dithiolate Complexes Related to the Active Site of the [FeFe]-Hydrogenases. Inorg. Chem. 2007, 46, 9863–9872. DOI: 10.1021/ic701327w.
  • Ghosh, S.; Hogarth, G.; Hollingsworth, N.; Holt, K. B.; Richard, I.; Richmond, M. G.; Sanchez, B. E.; Unwin, D. Models of the Iron-Only Hydrogenase: A Comparison of Chelate and Bridge Isomers of Fe2(CO)4{Ph2PN(R)PPh2}(μ-Pdt) as Proton-Reduction Catalysts. Dalton Trans. 2013, 42, 6775–6792. DOI: 10.1039/c3dt50147g.
  • Ghosh, S.; Hogarth, G.; Hollingsworth, N.; Holt, K. B.; Kabir, S. E.; Sanchez, B. E. Hydrogenase Biomimetics: Fe2(CO)4(μ-Dppf)(μ-Pdt) (Dppf = 1,1’-Bis(Diphenylphosphino)Ferrocene) Both a Proton-Reduction and Hydrogen Oxidation Catalyst. Chem. Commun. 2014, 50, 945–947. DOI: 10.1039/C3CC46456C.
  • Zhang, X.; Zhang, T.; Li, B.; Zhang, G.; Hai, L.; Ma, X.; Wu, W. Direct Synthesis of Phenol by Novel [FeFe]-Hydrogenase Model Complexes as Catalysts of Benzene Hydroxylation with H2O2. RSC Adv. 2017, 7, 2934–2943. DOI: 10.1039/C6RA27831K.
  • Zhang, X.; Zhang, T.; Li, Y.; Li, B.; Jiang, S.; Du, P.; Zhang, G.; Hai, L.; Ma, X.; Wu, W.; Liu, M. Bio-Inspired Catalyst: [(μ-(SCH(CH2CH3)CH2S))Fe(CO)5]2 (μ,k1,k1-DPPF) for Proton Reduction and Phenol Hydroxylation. Chemistryselect 2017, 2, 9407–9411. DOI: 10.1002/slct.201701449.
  • Niu, S. J.; Yu, X. Y.; Liu, X. F.; Li, Y. L. Tris(2-Methoxyphenyl)Phosphine Substituted Diiron Ethanedithiolate Complexes Containing Hydroxymethyl, Methyl or Ethyl Groups. Polyhedron 2017, 137, 127–133. DOI: 10.1016/j.poly.2017.08.041.
  • Zhao, P. H.; Li, X. H.; Liu, Y. F.; Liu, Y. Q. Facile Synthesis, X-Ray Analysis, and Spectroscopic Studies of Di-Iron Propanedithiolate Complexes with Tris(Aromatic) Phosphine Ligands. J. Coord. Chem. 2014, 67, 766–778. DOI: 10.1080/00958972.2014.903329.
  • He, J.; Deng, C.-L.; Li, Y.; Li, Y.-L.; Wu, Y.; Zou, L.-K.; Mu, C.; Luo, Q.; Xie, B.; Wei, J.; et al. A New Route to the Synthesis of Phosphine-Substituted Diiron Aza- and Oxadithiolate Complexes. Organometallics 2017, 36, 1322–1330. DOI: 10.1021/acs.organomet.7b00040.
  • Zhao, P.-H.; Ma, Z.-Y.; Hu, M.-Y.; He, J.; Wang, Y.-Z.; Jing, X.-B.; Chen, H.-Y.; Wang, Z.; Li, Y.-L. PNP-Chelated and -Bridged Diiron Dithiolate Complexes Fe2(μ-Pdt)(CO)4{(Ph2P)2NR} Together with Related Monophosphine Complexes for the [2Fe]H Subsite of [FeFe]-Hydrogenases: Preparation, Structure, and Electrocatalysis. Organometallics 2018, 37, 1280–1290. DOI: 10.1021/acs.organomet.8b00030.
  • Zhao, P. H.; Hu, M. Y.; Ma, Z. Y.; Li, J. R.; Wang, Y. Z.; He, J.; Li, Y. L.; Liu, X. F. Influence of Dithiolate Bridges on the Structures and Electrocatalytic Performance of Small Bite-Angle PNP-Chelated Diiron Complexes Fe2(μ-Xdt)(CO)4{κ2‐(Ph2P)2NR} Related to [FeFe]-Hydrogenases. Organometallics 2019, 38, 385–394. DOI: 10.1021/acs.organomet.8b00759.
  • Chen, F. Y.; He, J.; Yu, X. Y.; Wang, Z.; Mu, C.; Liu, X. F.; Li, Y. L.; Jiang, Z. Q.; Wu, H. K. Electrocatalytic Properties of Diiron Ethanedithiolate Complexes Containing Benzoate Ester. Appl. Organomet. Chem. 2018, 32, e4549. DOI: 10.1002/aoc.4549.
  • Zhao, P.; Yu, X. Y.; Liu, X. F.; Li, Y. L. Alkyldiphenylphosphine Substituted Diiron Ethanedithiolate or Toluenedithiolate Complexes. Polyhedron 2018, 139, 116–124. DOI: 10.1016/j.poly.2017.10.017.
  • Lu, D. T.; He, J.; Yu, X. Y.; Liu, X. F.; Li, Y. L.; Jiang, Z. Q. Diiron Ethanedithiolate Complexes with Pendant Ferrocene: Synthesis, Characterization and Electrochemistry. Polyhedron 2018, 149, 1–6. DOI: 10.1016/j.poly.2018.04.015.
  • Adam, F. I.; Hogarth, G.; Richard, I.; Sanchez, B. E. Models of the Iron-Only Hydrogenase: Structural Studies of Chelating Diphosphine Complexes [Fe2(CO)4(μ-Pdt)(κ2P,P′-Diphosphine)]. Dalton Trans. 2007, 2495–2498. DOI: 10.1039/B706123B.
  • Ezzaher, S.; Capon, J-Fois.; Gloaguen, Frédéric.; Pétillon, François. Y.; Schollhammer, Philippe; Talarmin, Jean; Kervarec, Nelly. Influence of a Pendant Amine in the Second Coordination Sphere on Proton Transfer at a Dissymmetrically Disubstituted Diiron System Related to the [2Fe]H Subsite of [FeFe]H2ase. Inorg. Chem. 2009, 48, 2–4. DOI: 10.1021/ic801369u.
  • Liu, X. F.; Xiao, X. W.; Shen, L. J. Synthesis, Characterization, and Crystal Structures of N-Functionalized Diiron Azadithiolate Complexes Related to the Active Site of [FeFe]-Hydrogenases. J. Coord. Chem. 2011, 64, 1023–1031. DOI: 10.1080/00958972.2011.561838.
  • Song, L. C.; Ge, J. H.; Liu, X. F.; Zhao, L. Q.; Hu, Q. M. Synthesis, Structure and Electrochemical Properties of N-Substituted Diiron Azadithiolates as Active Site Models of Fe-Only Hydrogenases. J. Organomet. Chem. 2006, 691, 5701–5709. DOI: 10.1016/j.jorganchem.2006.06.044.
  • Song, L. C.; Ge, J. H.; Zhang, X. G.; Liu, Y.; Hu, Q. M. Methoxyphenyl-Functionalized Diiron Azadithiolates as Models for the Active Site of Fe-Only Hydrogenases: Synthesis, Structures, and Biomimetic H2 Evolution. Eur. J. Inorg. Chem. 2006, 2006, 3204–3210. DOI: 10.1002/ejic.200600242.
  • APEX2, Version 2009.7-0; Bruker AXS, Inc.: Madison, WI, 2007.
  • Sheldrick, G. M. SADABS: Program for Absorption Correction of Area Detector Frames; Bruker AXS Inc.: Madison, WI, 2001.
  • Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. DOI: 10.1107/S0021889808042726.
  • Sheldrick, G. M. A Short History of SHELX. Acta Crystallogr A 2008, A64, 112–122. DOI: 10.1107/S0108767307043930.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.