87
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Trifunctionalized allenes. Part III. Electrophilic cyclization and cycloisomerization of 4-phosphorylated 5-hydroxypenta-2,3-dienoates: An expedient synthetic method to construct 2,5-dihydro-1,2-oxaphospholes, furan-2(5H)-ones and 2,5-dihydrofurans

, & ORCID Icon
Pages 314-323 | Received 17 Jul 2019, Accepted 13 Nov 2019, Published online: 27 Nov 2019

References

  • (a) Schuster, H. F.; Coppola, G. M. Allenes in Organic Synthesis; Wiley: New York, 1984; (b) Krause, N.; Hashmi, A. S. K., Eds. Modern Allene Chemistry; Wiley-VCH: Weinheim, 2004; (c) Brasholz, M.; Reissig, H.-U.; Zimmer, R. Sugars, Alkaloids, and Heteroaromatics: Exploring Heterocyclic Chemistry with Alkoxyallenes. Acc. Chem. Res. 2009, 42, 45–56. DOI: 10.1021/ar800011h. (d) Ma, S. Electrophilic Addition and Cyclization Reactions of Allenes. Acc. Chem. Res. 2009, 42, 1679–1688. DOI: 10.1021/ar900153r. (e) Yu, S.; Ma, S. Allenes in Catalytic Asymmetric Synthesis and Natural Product Syntheses. Angew. Chem. Int. Ed. 2012, 51, 3074–3112. DOI: 10.1002/anie.201101460.
  • Hoffmann-Röder, A.; Krause, N. Synthesis and Properties of Allenic Natural Products and Pharmaceuticals. Angew. Chem. Int. Ed. 2004, 43, 1196–1216. DOI: 10.1002/anie.200300628.
  • (a) Yu, F.; Lian, X.; Ma, S. Pd-Catalyzed Regio- and Stereoselective Cyclization − Heck Reaction of Monoesters of 1,2-Allenyl Phosphonic Acids with Alkenes. Org. Lett. 2007, 9, 1703–1706. DOI: 10.1021/ol0703478. (b) Yu, F.; Lian, X.; Zhao, J.; Yu, Y.; Ma, S. CuX2-Mediated Halolactonization Reaction of Monoesters of 1,2-Allenyl Phosphonic Acids and Their Suzuki Cross-Coupling Reaction. J. Org. Chem. 2009, 74, 1130–1134. DOI: 10.1021/jo802051r. (c) Li, P.; Liu, Z.-J.; Liu, J.-T. Iodocyclization of Trifluoromethylallenic Phosphonates: Am Efficient Approach to Trifluoromethylated Oxaphospholenes. Tetrahedron 2010, 66, 9729–9732. DOI: 10.1016/j.tet.2010.10.040. (d) Xin, N.; Ma, S. Efficient Synthesis of 4‐Halo‐2,5‐dihydro‐1,2‐oxaphosphole 2‐Oxides from 1,2‐Allenylphosphonates and CuX2 and Subsequent Suzuki Cross‐Coupling of the C–Cl Bonds. Eur. J. Org. Chem. 2012, 3806–3817. DOI: 10.1002/ejoc.201200228. (e) Fourgeaud, P.; Volle, J.-N.; Vors, J.-P.; Bekro, Y.-A.; Pirat, J.-L.; Virieux, D. 5-H-1,2-Oxaphosphole 2-Oxides, Key Building Blocks for Diversity Oriented Chemical Libraries. Tetrahedron 2016, 72, 7912–7925. DOI: 10.1016/j.tet.2016.10.011. (f) Essid, I.; Laborde, C.; Legros, F.; Sevrain, N.; Touil, S.; Rolland, M.; Ayad, T.; Volle, J.-N.; Pirat, J.-L.; Virieux, D. Phosphorus-Containing Bis-allenes: Synthesis and Heterocyclization Reactions Mediated by Iodine or Copper Dibromide. Org. Lett. 2017, 19, 1882–1885. DOI: 10.1021/acs.orglett.7b00648.
  • (a) Wua, C.; Yeb, F.; Wub, G.; Xub, S.; Deng, G.; Zhang, Y.; Wang, J. Synthesis of Allenylphosphonates through Cu(I)-Catalyzed Coupling of Terminal Alkynes with Diazophosphonates. Synthesis 2016, 48, 751–760. DOI: 10.1055/s-0035-1561298. (b) Yang, J.; Zhang, M.; Dong, C.; Han, L.-B.; Shen, R. Solvent-Free Zn(OTf)2-Catalyzed Dehydrative Cross Coupling of Propargyl Alcohols with Diarylphosphine Oxides to Afford Allenylphosphine Oxides, Phosphorus Sulfur Silicon Relat. Elem. 2018, 193, 691–696; DOI: 10.1080/10426507.2018.1490281. (c) Shen, R.; Luo, B.; Yang, J.; Zhang, L.; Han, L.-B. Convenient Synthesis of Allenylphosphoryl Compounds via Cu-catalysed Couplings of P(O)H Compounds with Propargyl Acetates. Chem. Commun. 2016, 52, 6451–6454. DOI: 10.1039/C6CC02563C. (d) Shen, R.; Yang, J.; Zhang, M.; Han, L.-B. Silver‐Catalyzed Atom‐Economic Hydrophosphorylation of Propargyl Epoxides: An Access to 4‐Phosphoryl 2,3‐Allenols and Stereodefined 1‐Phosphoryl 1,3‐Dienes. Adv. Synth. Catal. 2017, 359, 3626–3637. DOI: 10.1002/adsc.201700421. (e) Shen, R.; Yang, J.; Zhao, H.; Feng, Y.; Zhang, L.; Han, L.-B. Cu-Catalyzed Hydrophosphorylative Ring Opening of Propargyl Epoxides: Highly Selective Access to 4-Phosphoryl 2,3-Allenols. Chem. Commun. 2016, 52, 11959–11962. DOI: 10.1039/C6CC05428E. (f) Kumara Swamy, K. C.; Phani Pavan, M.; Anitha, M.; Gangadhararao, G. New Addition and Cyclization Reactions Involving Phosphorus Based Allenes. Phosphorus Sulfur Silicon Relat. Elem. 2018, 193, 691–696; DOI: 10.1080/10426507.2017.1417302. (g) Fourgeaud, P.; Volle, J.-V.; Vors, J.-P.; Bekro, Y.-A.; Pirat, J.-L.; Virieux, D. 5-H-1,2-Oxaphosphole 2-oxides, Key Building Blocks for Diversity Oriented Chemical Libraries, Tetrahedron 2016, 72, 7912–7925. DOI: 10.1016/j.tet.2016.10.011. (h) Sajna, K. V.; Kotikalapudi, R.; Chakravarty, M.; Bhuvan Kumar, N. N.; Kumara Swamy, K. C. Cycloaddition Reactions of Allenylphosphonates and Related Allenes with Dialkyl Acetylenedicarboxylates, 1,3-Diphenylisobenzofuran, and Anthracene. J. Org. Chem. 2011, 76, 920–938. DOI: 10.1021/jo102240u. (i) Srinivas, V.; Sajna, K. V.; Kumara Swamy, K. C. To Stay as Allene or Go Further? Synthesis of Novel Phosphono-heterocycles and Polycyclics via Propargyl Alcohols. Chem. Commun. 2011, 47, 5629–5631. DOI: 10.1039/C1CC10230C. (j) Gangadhararao, G.; Kumara Swamy, K. C. Unusual Nitrogen Based Heterocycles via Allenic Intermediates from the Reaction of Propargyl Alcohols with P(III) Substrates. Tetrahedron 2014, 70, 2643–2653; DOI: 10.1016/j.tet.2014.02.064. (k) Kumara Swamy, K. C.; Mandala Anitha, M.; Gangadhararao, G.; Rama Suresh, R. Exploring Allene Chemistry Using Phosphorus-based Allenes as Scaffolds. Pure Appl. Chem. 2017, 89, 367–368. DOI: 10.1515/pac-2016-0907. (l) Kumara Swamy, K. C.; Anitha, M.; Debnath, S.; and Shankar, M. Reactivity of Allenylphosphonates/Allenylphosphine Oxides – Some New Addition/Cycloaddition and Cyclization Pathways. Pure Appl. Chem. 2019, 91. DOI: 10.1515/pac-2018-1111. (m) Bogachenkov, A. S.; Dogadina, A. V.; Boyarskaya, I. A.; Boyarskiy, V. P.; Vasilyev, A. V. Synthesis of 1,4-Dihydrophosphinoline 1-Oxides by Acid-promoted Cyclization of 1-(Diphenylphosphoryl)allenes. Org. Biomol. Chem. 2016, 1370–1381. DOI: 10.1039/C5OB02143J. (n) Lozovskiy, S. V.; Ivanov, A. Y.; Bogachenkov, A. S.; Vasilyev, A. V. 2,5-Dihydro-1,2-oxaphosphol-2-ium Ions, as Highly Reactive Phosphorus-Centered Electrophiles: Generation, NMR Study, and Reactions. Chem. Select. 2017, 2, 4505–4510. DOI: 10.1002/slct.201700637. (o) Essid, I.; Laborde, C.; Legros, F.; Sevrain, N.; Touil, S.; Rolland, M.; Ayad, T.; Volle, J.-N.; Pirat, J.-L.; Virieux, D. Phosphorus-Containing Bis-allenes: Synthesis and Heterocyclization Reactions Mediated by Iodine or Copper Dibromide, Org. Lett. 2017, 19, 1882–1885. DOI: 10.1021/acs.orglett.7b00648.
  • Brel, V. K.; Belsky, V. K.; Stash, A. I.; Zavodnik, V. E.; Stang, P. J. Synthesis and Molecular Structure of New Unsaturated Analogues of Nucleotides Containing Six-Membered Rings. Eur. J. Org. Chem. 2005, 2005, 512–521. DOI: 10.1002/ejoc.200400523.
  • (a) Angelov, C. M. Reactivity of Sulfuryl Chloride in Reaction with 1,2- Alkadienephosphonates. Zh. Obshch. Khim. 1980, 50, 2448–2452. (b) Angelov, C. M.; Stoianov, N. M.; Ionin, B. I. Halogenation of 5-Methyl-1,3,4-Hexatriene-3-Phosphonic Dialkyl Esters. Zh. Obshch. Khim. 1982, 52, 178–181. (c) Angelov, Ch. M.; Christov, Ch. Z. Synthesis of 3-Vinyl-2,5-Dihidro-1,2-Oxaphophole-2-Oxides. Synthesis 1984, 664–667. DOI: 10.1055/s-1984-30926. (d) Yu, F.; Lian, X.; Zhao, J.; Yu, Y.; Ma, S. CuX2-Mediated Halolactonization Reaction of Monoesters of 1,2-Allenyl Phosphonic Acids and their Suzuki Cross-Coupling Reaction. J. Org. Chem. 2009, 74, 1130–1134. DOI: 10.1021/jo802051r. (e) Angelov, C. M. Five-membered Heterocyclization of Phosphorus-containing Allenes by their Reaction with Electrophiles-Possibilities and Restrictions. Phosphorus Sulfur Silicon Relat. Elem. 1983, 15, 177–193. DOI: 10.1080/03086648308073293. (f) Khusainova, N. G.; Pudovik, A. N. Phosphorylated Allenes. Methods of Synthesis and Properties. Russ. Chem. Rev. 1987, 56, 564–578. DOI: 10.1070/RC1987v056n06ABEH003290. (g) Alabugin, I. V.; Brel, V. K. Phosphorylated Allenes: Structure and Interaction with Electrophilic Reagents. Russ. Chem. Rev. 1997, 66, 205–224. DOI: 10.1070/RC1997v066n03ABEH000262. (h) Ma, S. Electrophilic Addition and Cyclization Reactions of Allenes. Acc. Chem. Res. 2009, 42, 1679–1688. DOI: 10.1021/ar900153r. (i) Brel, V. K. Phosphonoallenes for Building Organophosphorus Derivatives. Heteroatom. Chem. 2006, 17, 547–556. DOI: 10.1002/hc.20275.
  • (a) Angelov, C. M.; Christov, C. Z.; Ionin, B. I. Chlorination of Tertiary Allenic Phosphine Oxides. Zh. Obshch. Khim. 1982, 52, 264–267. (b) Khusainova, N. G.; Naumova, L. V.; Berdnikov, E. A.; Pudovik, A. N. Interaction of Phosphorylated Allenes with Sulfenyl Chlorides. Zh. Obshch. Khim. 1982, 52, 1040–1046. [c] Enchev, D. D.; Angelov, C. M.; Krawchik, E.; Skowronska, A.; Michalski, J. 2,5-Dihydro-1,2-Oxaphospholene Derivatives by the Reaction of 1,2-Alkadienephosphonates and Phosphorus Pseudohalogenes. Phosphorus Sulfur Silicon Relat. Elem. 1991, 57, 249–253. DOI: 10.1080/10426509108038856.
  • For reviews, see (a) Rao, Y. S. Chemistry of Butenolides. Chem. Rev. 1964, 64, 353–388. (b) Rao, Y. S. Recent Advances in the Chemistry of Unsaturated Lactones. Chem. Rev. 1976, 76, 625–994. DOI: 10.1021/cr60303a004. (c) Knight, D. W. Synthetic Approaches to Butenolides. Contemp. Org. Synth. 1994, 287–315. DOI: 10.1021/cr60230a002.
  • (a) Kohler, E. P.; Whitcher, W. J. Optically Active α,γ-Diphenyl-α-carbomethoxy-γ-naphthylallene. J. Am. Chem. Soc. 1940, 62, 1489–1490. DOI: 10.1021/ja01863a044. (b) Asknes, G.; Froyen, P. Study of the Applicability of the Wittig Reaction in Syntheses of Allenes. Acta Chem. Scand. 1968, 22, 2347–2352. DOI: 10.3891/acta.chem.scand.22-2347. (c) Kresze, G.; Runge, W.; Ruth, E. Zur Stereochemie von Allenen, I. Darstellung und optische Spaltung einer Gruppe von Allencarbonsäuren. Liebigs Ann. Chem. 1972, 756, 112–127. DOI: 10.1002/jlac.19727560111. (d) Musierowicz, S.; Wroblewski, A.; Krawczyk, H. Stereochemistry of p-Chiral Phosphinylacetic Acid Esters I Asymmetric Synthesis of Substituted Alkadiene-1,2-carboxylic-1 and X-Chiral α, β-Unsaturated Carboxylic Acid Esters. Tetrahedron Lett. 1975, 437–440. DOI: 10.1016/S0040-4039(00)71887-9. (e) Kresze, G.; Kloimstein, L.; Runge, W. Stereochemie von Allenen, III1) Cyclisierungsreaktionen Chiraler 3‐Phenylallencarbonsäuren. Liebigs Ann. Chem. 1976, 979–986. DOI: 10.1002/jlac.197619760602. (f) Gill, G. B.; Idris, M. S. H. Synthesis of α,β-Unsaturated Butenolides from Allenic Acids. Tetrahedron Lett.1985, 26, 4811–4814. DOI: 10.1016/S0040-4039(00)94958-X. (g) Shingu, K.; Hagishita, S.; Nakagawa, M. The Determination of the Absolute Configurations of Some Phenylallenecarboxylic Acids. Tetrahedron Lett. 1967, 4371–4374. DOI: 10.1016/S0040-4039(01)89692-1. (h) Ma, S.; Wu, S. CuX2-Mediated Cyclization Reaction of 2,3-Allenoic Acids. An Efficient Route to β-Halobutenolides. J. Org. Chem. 1999, 64, 9314–9317. (i) Ma, S.; Shi, Z.; Yu, Z. Synthesis of β-Halobutenolides and their Pd(0)-Catalyzed Cross-Coupling Reactions with Terminal Alkynes and Organozinc Reagents. A General Route to β-Substituted Butenolides and Formal Synthesis of cis-Whisky Lactone. Tetrahedron 1999, 55, 12137–12148. DOI: 10.1021/jo991574t. (j) Ma, S.; Wu, S. CuBr2-Mediated Direct Aqueous Bromolactonization of 2,3-Allenoates. An Efficient Access to β-Bromobutenolides. Tetrahedron Lett. 2001, 42, 4075–4077. DOI: 10.1016/S0040-4039(01)00634-7. (k) Ma, S.; Pan, F.; Hao, X.; Huang, X. Reaction of PhSeCl or PhSCl with 2,3-Allenoic Acids: An Efficient Synthesis of β-Organoselenium or β-Organosulfur Substituted Butenolides. Synlett 2004, 85–88. DOI: 10.1055/s-2003-43377. (l) Fu, C.; Ma, S. Efficient Preparation of 4‐Iodofuran‐2(5H)‐ones by Iodolactonisation of 2,3‐Allenoates with I2. Eur. J. Org. Chem. 2005, 3942–3945. DOI: 10.1002/ejoc.200500296. (m) Chen, G.; Fu, C.; Ma, S. Studies on Electrophilic Addition Reaction of 2,3-Allenoates with PhSeCl. Tetrahedron 2006, 62, 4444–4452. DOI: 10.1016/j.tet.2006.02.053. (n) Zhou, C.; Ma, Z.; Gu, Z.; Fu, C.; Ma, S. An Efficient Approach for Monofluorination via Aqueous Fluorolactonization Reaction of 2,3-Allenoic Acids with Selectfluor. J. Org. Chem. 2008, 73, 772–774. DOI: 10.1021/jo702409y.
  • Zimmer, R.; Dinesh, C. U.; Nandanan, E.; Khan, F. A. Palladium-Catalyzed Reactions of Allenes. Chem. Rev. 2000, 100, 3067–3125. DOI: 10.1021/cr9902796.
  • (a) Olsson, L.-I.; Claesson, A. Synthesis of 2,5-Dihydrofurans and 5,6-Dihydro-2H-pyrans by Silver(I)-Catalyzed Cyclization of Allenic Alcohols. Synthesis 1979, 743–745. DOI: 10.1055/s-1979-28825. (b) Nikam, S. S.; Chu, K. H.; Wang, K. K. The Cyclization of Trimethylsilyl-substituted a-Allenic Alcohols to 3-(trimethylsilyl)-2,5-dihydrofurans and their Facile Autoxidation to 3-(Trimethylsilyl)furans or 4-(Trimethylsilyl)-2(5H)-furanones. J. Org. Chem. 1986, 51, 745–747. DOI: 10.1021/jo00355a034. (c) Marshall, J. A.; Sehon C. A. Synthesis of Furans and 2,5-Dihydrofurans by Ag(I)-Catalyzed Isomerization of Allenones, Alkynyl Allylic Alcohols, and Allenylcarbinols. J. Org. Chem. 1995, 60, 5966–5968. DOI: 10.1021/jo00123a040. (d) Marshall, J. A.; Yu, R. H.; Perkins, J. F. Diastereo- and Enantioselective Synthesis of Allenylcarbinols through SE2’ Addition of Transient Nonracemic Propargylic Stannanes to Aldehydes. J. Org. Chem. 1995, 60, 5550–5555. DOI: 10.1021/jo00122a040.
  • (a) Chilot, J.-J.; Doutheau, A.; Gore, J. Heterocyclisation de diols βγ-alleniques. Tetrahedron Lett. 1982, 23, 4693–4696. DOI: 10.1016/S0040-4039(00)85689-0. (b) Gelin, R.; Gelin, S.; Albrand, M. Oxymercuration Demercuration d’Alcools α-Alleniques. Bull. Soc. Chim. Fr. 1972, 1946–1949.
  • (a) Uemura, K.; Shiraishi, D.; Noziri, M.; Inoue, Y. Preparation of Cyclic Carbonates from Alkadienols, CO2, and Aryl or Vinylic Halides Catalyzed by a Palladium Complex. Bull. Chem. Soc. Jpn. 1999, 72, 1063–1069. DOI: 10.1246/bcsj.72.1063. (b) Kang, S.-K.; Baik, T.-G.; Kulak, A. N. Palladium(0)-Catalyzed Coupling Cyclization of Functionalized Allenes with Hypervalent Iodonium Salts. Synlett 1999, 324–326. DOI: 10.1055/s-1999-2613. (c) Kang, S.-K.; Yamaguchi, T.; Pyun, S.- J.; Lee, Y.-T.; Baik, T.-G. Palladium-catalyzed Arylation of α-Allenic Alcohols with Hypervalent Iodonium Salts: Synthesis of Epoxides and Diol Cyclic Carbonates. Tetrahedron Lett. 1998, 39, 2127–2130. DOI: 10.1016/S0040-4039(98)00076-8.
  • (a) Ma, S.; Gao, W. Efficient Synthesis of 4-(20-Alkenyl)-2,5-dihydrofurans via PdCl2-catalyzed Coupling-cyclization Reaction of 2,3-Allenols with Allylic Halides. Tetrahedron Lett. 2000, 41, 8933–8936. DOI: 10.1016/S0040-4039(00)01585-9. (b) Ma, S.; Gao, W. Efficient Synthesis of 4-(2’-Alkenyl)-2,5-Dihydrofurans and 5,6-Dihydro-2H-pyrans via the Pd-Catalyzed Cyclizative Coupling Reaction of 2,3- or 3,4-Allenols with Allylic Halides. J. Org. Chem. 2002, 67, 6104–6112. DOI: 10.1021/jo0163997.
  • (a) Yoneda, E.; Kaneko, T.; Zhang, S.-W.; Onitsuka, K.; Takahashi, S. Ruthenium-Catalyzed Cyclic Carbonylation of Allenyl Alcohols. Selective Synthesis of χ- and δ-Lactones. Org. Lett. 2000, 2, 441–443. DOI: 10.1021/ol990377d. (b) Trost, B. M.; Pinkerton, A. B. A Ruthenium-Catalyzed Alkylative Cycloetherification. J. Am. Chem. Soc. 1999, 121, 10842–10843. DOI: 10.1021/ja9929537.
  • (a) Hoffmann-Roder, A.; Krause, N. The Golden Gate to Catalysis. Org. Biomol. Chem. 2005, 3, 387–391. DOI: 10.1039/B416516K. (b) Widenhoefer, R. A.; Han, X. Gold-Catalyzed Hydroamination of C–C Multiple Bonds. Eur. J. Org. Chem. 2006, 4555–4563. DOI: 10.1002/ejoc.200600399. (c) Hashmi, A. S. K.; Hutchings, G. J. Gold Catalysis. Angew. Chem. Int. Ed. 2006, 45, 7896–7936. DOI: 10.1002/anie.200602454. (d) Jimenez-Nunez, E.; Echavarren, A. M. Molecular Diversity through Gold Catalysis with Alkynes. Chem. Commun. 2007, 333–343. DOI: 10.1039/B612008C. (e) Gorin, D. J.; Toste, F. D. Relativistic Effects in Homogeneous Gold Catalysis. Nature 2007, 446, 395–403. DOI: 10.1038/nature05592. (f) Bongers, N.; Krause, N. Golden Opportunities in Stereoselective Catalysis. Angew. Chem. Int. Ed. 2008, 47, 2178–2181. DOI: 10.1002/anie.200704729.
  • (a) Hoffman-Roder, A.; Krause, N. Gold(III) Chloride Catalyzed Cyclization of α-Hydroxyallenes to 2,5-Dihydrofurans. Org. Lett. 2001, 3, 2537–2538. DOI: 10.1021/ol01620+. (b) Krause, N.; Hoffman-Roder, A.; Canisius, J. From Amino Acids to Dihydrofurans: Functionalized Allenes in Modern Organic Synthesis. Synthesis 2002, 1759–1774. DOI: 10.1055/s-2002-33707. (c) Deutsch, C.; Gockel, B.; Hoffmann-Roder, A.; Krause, N. Golden Opportunities in Stereoselective Catalysis: Optimization of Chirality Transfer and Catalyst Efficiency in the Gold-Catalyzed Cycloisomerization of α-Hydroxyallenes to 2,5-Dihydrofurans. Synlett 2007, 1790–1794. DOI: 10.1055/s-2007-982561.
  • (a) Brel, V. K. Synthesis and Cyclization of Diethylphosphono-Substituted α-Allenic Alcohols to 4-(Diethylphosphono)-2,5-Dihydrofurans. Synthesis 1999, 463–466. DOI: 10.1055/s-1999-3420. (b) Brel, V. K.; Abramkin, E. V. Cyclization of Allenyl Phosphonates to 3-Chloro-4-(Diethylphosphono)-2,5-Dihydrofurans Induced by CuCl2. Mendeleev Commun. 2002, 12, 64–66. DOI: 10.1070/MC2002v012n02ABEH001574.
  • Ismailov, I. E.; Ivanov, I. K.; Christov, V. C. Trifunctionalized Allenes. Part I. A Convenient and Efficient Regioselective Synthesis of 4-Phosphorylated 5-Hydroxyalka-2,3-Dienoates. Bulg. Chem. Commun. Special Edition B 2017, 49, 33–41.
  • (a) De la Mare, P. B. D.; Bolton, R. Electrophilic Addition to Unsaturated Systems; Elsevier: Amsterdam, The Netherlands, 1966; pp. 250–266. (b) Caserio, M. C. Selectivity in Addition Reactions of Allenes in Selective Organic Transformations; Thyagarajan, B. S., Ed.; John Wiley & Sons: New York, NY, 1970; pp. 239–299. (c) De la Mare, P. B. D.; Bolton, R. Electrophilic Addition to Unsaturated Systems; Elsevier: Amsterdam, The Netherlands, 1982; pp. 317–325. (d) Jacobs, T. L. Electrophilic Addition to Allenes in the Chemistry of the Allenes; Landor, S. R., Ed.; Academic Press: New York, 1982; Vol. 2, pp. 417–510. (e) Smadja, W. Electrophilic Addition to Allenic Derivatives: Selectivity, Regio- and Stereochemistry and Mechanisms. Chem. Rev. 1983, 83, 263–320. DOI: 10.1021/cr00055a003. (f) Ma, S. Ionic Addition to Allenes in Modern Allene Chemistry; Krause, N., Hashmi, A. S. K., Eds.; Wiley-VCH: Weinheim, Germany, 2004; Vol. 2, pp. 595–699.
  • Baldwin, J. E. Rules for Ring Closure. J. Chem. Soc. Chem. Commun. 1976, 734–736. DOI: 10.1039/c39760000734.
  • (a) Ivanov, I. K.; Parushev, I. D.; Christov, V. C. Bifunctionalized Allenes. Part XI. Competitive Electrophilic Cyclization and Addition Reactions of 4-Phosphorylated Allenecarboxylates. Heteroatom Chem. 2014, 25, 60–71. DOI: 10.1002/hc.21136. (b) Ismailov, I. E.; Ivanov, I. K.; Christov, V. C. Bifunctionalized Allenes. Part XV. Synthesis of 2,5-Dihydro-1,2-Oxaphospholes by Electrophilic Cyclization Reaction of Phosphorylated α-Hydroxyallenes. Molecules 2014, 19, 11056–11076. DOI: 10.3390/molecules190811056. (c) Christov, V. C.; Ismailov, I. E.; Ivanov, I. K. Bifunctionalized Allenes. Part XVI. Synthesis of 3-Phosphoryl-2,5-dihydrofurans by Coinage Metal-Catalyzed Cyclo-isomerization of Phosphorylated α-Hydroxyallenes. Molecules 2015, 20, 7263–7275. DOI: 10.3390/molecules20047263. (d) Hasanov, H. H.; Ivanov, I. K.; Christov, V. C. Bifunctionalized allenes. Part XXI. Electrophilic Cyclization аnd Addition Reactions of 3-(α- or β-Hydroxyalkyl)-allenephosphonates and -allenyl Phosphine Oxides. Phosphorus Sulfur Silicon Relat. Elem. 2018, 193, 611–619. DOI: 10.1080/10426507.2018.1487432. (e) Hasanov, H. H.; Ivanov, I. K.; Christov, V. C. Bifunctionalized allenes. Part XXII. Coinage Metal-catalyzed Cycloisomerization of Phosphorylated 3-(α- or β-Hydroxyalkyl)allenes to 2-Phosphoryl-2,5-dihydrofurans or 2-Phosphoryl-5,6-dihydro-2Н-pyrans. Phosphorus Sulfur Silicon Relat. Elem. 2018, 193, 797–805. DOI: 10.1080/10426507.2018.1515947. (f) Hasanov, H. H.; Ivanov, I. K.; Christov, V. C. Bifunctionalized allenes, Part XIX: Synthesis, Electrophilic Cyclization/addition, and Coinage Metal-catalyzed Cycloisomerization of Phosphorylated 3-(β-Hydroxy)allenes. Heteroatom Chem. 2017, 28, e21357. DOI: 10.1002/hc.21357.
  • Lecher, H.; Holschneider, F. Phenyl‐Schwefelchlorid. Ber. Dtsch. Chem. Ges. A/B. 1924, 57, 755–758. DOI: 10.1002/cber.19240570503.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.