122
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis of multifunctional copolymers of poly(methylphenylsilane) with (R)-N-(1-phenylethyl)methacrylamide, disperse red 1 methacrylate and their optical and photoluminescence properties

ORCID Icon, , , &
Pages 348-358 | Received 01 Jun 2019, Accepted 29 Nov 2019, Published online: 13 Dec 2019

References

  • Nemat-Nasser, S.; Plaisted, T.; Starr, A.; Amirkhizi, A. V. Multifunctional Materials. In BIOMIMETICS: Biologically Inspired Technologies; Bar-Cohen, Yoseph, Ed.; Nova Science Publisher, 2005; Ch. 12, pp 309–341.
  • Bag, D. S. Functional Polymer. In Principles of Polymers-An Advanced Book; Bag, Dibyendu S., Ed.; Nova Science Publishers Inc.: New York, 2013; Ch. 11, pp 497–590.
  • Li, J.; Li, Z.; Tang, H.; Zeng, H.; Qin, J. Polysilanes with NLO Chromophores as Pendant Groups by Utilizing Different Synthetic Strategies. J. Organomet. Chem. 2003, 685, 258–268. DOI: 10.1016/S0022-328X(03)00647-8.
  • Miller, R. D.; Michl, J. Polysilane High Polymers. Chem. Rev. 1989, 89, 1359–1410. DOI: 10.1021/cr00096a006.
  • West, R. The Polysilane High Polymers. J. Organomet. Chem. 1986, 300, 327–346. DOI: 10.1016/0022-328X(86)84068-2.
  • Matyjaszewski, K.; Cypryk, M.; Frey, H.; Hrkach, J.; Kim, H. K.; Moeller, M.; Ruehl, K.; White, M. Synthesis and Characterization of Polysilanes. J. Macromol. Sci. A: Pure Appl. Chem. 1991, 28, 1151–1176. DOI: 10.1080/00222339108054090.
  • Hayase, S. Polysilanes for Semiconductor Fabrication. Prog. Polym. Sci. 2003, 28, 359–381. DOI: 10.1016/S0079-6700(02)00034-5.
  • Michl, J.; West, R. Silicon-Containing Polymers: The Science and Technology of their Synthesis and Applications. In Silicon Containing Polymers; Jones, R. G.; Ando, W.; Chojnowski, J.; Eds.; Kluwer: Dordrecht, The Netherlands, 2000; p 499.
  • West, R.; Menescal, R.; Asuke, T.; Eveland, J. Some Recent Developments in Polysilane Chemistry. J. Inorg. Organomet. Polym. 1992, 2, 29–45. DOI: 10.1007/BF00696534.
  • Yi, S. H.; Maeda, N.; Suzuki, T.; Sato, H. Preparation and Characterization of Polysilanes with Electron Donating Substituent. Polym. J. 1992, 24, 865–870. DOI: 10.1295/polymj.24.865.
  • Cleij, T. J.; King, J. K.; Jenneskens, L. W. Band Gap Modifications in Functionalized Poly(Methylphenylsilanes). Macromolecules 2000, 33, 89–96. DOI: 10.1021/ma9914063.
  • Harrah, L. A.; Zeigler, J. M. Electronic Spectra of Hindered Silyl and Organo-Substituted Polysilylenes. Macromolecules 1987, 20, 2037–2039. DOI: 10.1021/ma00174a064.
  • Koe, J. Contemporary Polysilane Synthesis and Functionalization. Polym. Int. 2009, 58, 255–260. DOI: 10.1002/pi.2534.
  • Schwegler, L. A.; Meyer-Pundsack, C.; Möller, M. Synthesis of Polyethylene Oxide Graft Polysilylenes and Networks Based on Poly(Di‐N‐Pentylsilylene/N‐Pentyloct‐7‐Enyl) Copolymers. J. Polym. Sci. A Polym. Chem. 2000, 38, 2306–2318. DOI: 10.1002/1099-0518(20000701)38:13<2306::AID-POLA30>3.3.CO;2-8.
  • Ban, H.; Sukegawa, K.; Tagawa, S. Pulse Radiolysis Study on Organopolysilane Radical Anions. Macromolecules 1987, 20, 1775–1778. DOI: 10.1021/ma00174a011.
  • Hendrickx, E.; Steenwinckel, D. V.; Persoons, A.; Watanabe, A. Photorefractive Polysilanes Functionalized with a Nonlinear Optical Chromophore. Macromolecules 1999, 32, 2232–2238. DOI: 10.1021/ma9810013.
  • Zhan, C.; Zeng, H.; Qin, J.; Liu, D.; Cheng, N.; Cui, Y. Synthesis, Photoconduction and Electro-Optical Effect of a Polysilane with Disperse Red-1 as Side Chain. Synth. Met. 1997, 84, 397–398. DOI: 10.1016/S0379-6779(97)80800-4.
  • Tang, H.; Liu, Y.; Huang, B.; Qin, J.; Fuentes-Hernandez, C.; Kippelen, B.; Li, S.; Ye, C. Synthesis and Optical Properties of a Series of Chromophore Functionalized Polysilanes. J. Mater. Chem. 2005, 15, 778–784. DOI: 10.1039/b413016b.
  • Peng, Z. H.; Bao, Z. N.; Chen, Y. M.; Yu, L. Photorefractivity in an Exceptionally Thermostable Multifunctional Polyimide. J. Am. Chem. Soc. 1994, 116, 6003–6004. DOI: 10.1021/ja00092a075.
  • Peng, Z. H.; Gharavi, A. R.; Yu, L. Hybridized Approach to New Polymers Exhibiting Large Photorefractivity. Appl. Phys. Lett. 1996, 69, 4002–4004. DOI: 10.1063/1.117851.
  • Reuss, V. S.; Frey, H. Multihydroxy-Functional Polysilanes via an Acetal Protecting Group Strategy. Macromolecules 2010, 43, 8462–8467. DOI: 10.1021/ma1016715.
  • Tang, H.; Li, J.; Qin, J. Synthesis of Multifunctional Polysilanes via Si–Cl Containing Intermediate. React. Funct. Polym. 2001, 48, 193–199. DOI: 10.1016/S1381-5148(01)00052-9.
  • Trefonas, P.; West, R.; Miller, R. D. Polysilane High Polymers: mechanism of Photodegradation. J. Am. Chem. Soc. 1985, 107, 2737–2742. DOI: 10.1021/ja00295a028.
  • Wolff, A. W.; West, R. Photoinitiation of Vinyl Polymerization by Polysilanes. Appl. Organomet. Chem. 1987, 1, 7–14. DOI: 10.1002/aoc.590010103.
  • Yucesan, D.; Hostygar, H.; Denizligil, S.; Yagci, Y. Angew. Makromol. Chem. 1994, 221, 207–216. DOI: 10.1002/apmc.1994.052210117.
  • Mimura, S.; Naito, H.; Kanemitsu, Y.; Matsukawa, K.; Inoue, H. Optical Properties of Organic–Inorganic Hybrid Thin Films Containing Polysilane Segments Prepared from Polysilane–Methacrylate Copolymers. J. Organomet. Chem. 2000, 611, 40–44. DOI: 10.1016/S0022-328X(00)00297-7.
  • Nespurek, S.; Zakrevskyy, Y.; Stumpe, J.; Sapich, B.; Kadashchuk, A. Macromolecules 2006, 39, 690–696. DOI: 10.1021/ma050278h.
  • West, R.; Wolff, A. R.; Peterson, D. J. J. Radiat. Curing 1986, 13, 35.
  • Corrales, T.; Catalina, F.; Peinado, C.; Allen, N. S. Free Radical Macrophotoinitiators: An Overview on Recent Advances. J. Photochem. Photobiol. A: Chem. 2003, 159, 103–114. DOI: 10.1016/S1010-6030(03)00175-8.
  • Hiorns, R. C.; Holder, S. J. The Synthesis of Organometallic Rod-Coil Block Copolymers from Polysilanes. Polym. Int. 2009, 58, 323–329. DOI: 10.1002/pi.2535.
  • Meenu, K.; Bag, D. S.; Saxena, A. K. Synthesis of Organic–Inorganic Chiral Block Poly(Methylphenylsilane) Functional Polymers, and Study of Their Optical and Chiroptical Properties. J. Polym. Sci. Part A: Polym. Chem. 2016, 54, 3626–3634. DOI: 10.1002/pola.28251.
  • Meenu, K.; Bag, D. S. Synthesis and Characterization of Functional Photoactive Organic-Inorganic Block Copolymers of Poly(Methylphenylsilane) and Disperse Red 1 Methacrylate and Study of Their Optical and Photophysical Properties. J. Macromol. Sci. Part A Appl. Chem. 2017, 54, 418–425. DOI: 10.1080/10601325.2017.1313156.
  • Bag, D. S.; Alam, S. Synthesis and Characterization of Photoactive Chiral Copolymers of (S)‐N‐(1‐Phenyl Ethyl) Methacrylamide and Disperse Red 1 Methacrylate. J. Appl. Polym. Sci. 2012, 125, 2595–2603. DOI: 10.1002/app.36369.
  • Bag, D.; Shami, T.; Rao, K. Chiral Nanoscience and Nanotechnology. DSJ 2008, 58, 626–635. DOI: 10.14429/dsj.58.1685.
  • Ranjan, A.; Bisaria, C. S.; Saxena, A. K. Int. J. Technol. 1993, 31, 666–671.
  • Nasim, M.; Saxena, A. K.; Pande, L. M. Hydrosilylation of 1-Vinylsilatrane. Polyhedron 1988, 7, 2189–2192. DOI: 10.1016/S0277-5387(00)81801-X.
  • Bag, D. S.; Shami, T. C.; Rao, K. U. B. Synthesis and Characterization of a Chiral Monomer and Its Polymer, Poly [D-(+)-α-Methyl Benzyl Methacryloylamine]. J. Polym. Mater. 2008, 25, 51–62.
  • Sukla, S. K.; Tiwari, R. K.; Ranjan, A.; Saxena, A. K.; Mathur, G. N. Thermochem. Acta 2004, 424, 209–217. DOI: 10.1016/j.tca.2004.06.003.
  • Ding, L.; Russell, T. P. A Photoactive Polymer with Azobenzene Chromophore in the Side Chain. Macromolecules 2007, 40, 2267–2270. DOI: 10.1021/ma062653r.
  • Green, M. M.; Reidy, M. P.; Johnson, R. D.; Darling, G.; O'Leary, D. J.; Willson, G. Macromolecular Stereochemistry: The out-of-Proportion Influence of Optically Active Comonomers on the Conformational Characteristics of Polyisocyanates. The Sergeants and Soldiers Experiment. J. Am. Chem. Soc. 1989, 111, 6452–6454. DOI: 10.1021/ja00198a084.
  • Altomare, A.; Ciardelli, F.; Ghiloni, M. S.; Solaro, R.; Tirelli, N. Chiral Methacrylic Polymers Containing Permanent Dipole Azobenzene Chromophores. 13C NMR Spectra and Photochromic Properties. Macromol. Chem. Phys. 1997, 198, 1739–1752. DOI: 10.1002/macp.1997.021980604.
  • Steinke, J. M.; Shepherd, A. P. Effects of Temperature on Optical Absorbance Spectra of Oxy-, Carboxy-, and Deoxyhemoglobin. Clin. Chem. 1992, 38, 1360–1364.
  • Vetrakova, L.; Ladányi, V.; Anshori, J. A.; Dvorak, P.; Wirz, J.; Heger, D. Photochem. Photobiol. Sci. 2017, 16, 1749–1756. DOI: 10.1039/C7PP00314E.
  • Muller, M.; Zentel, R. Azo‐Dyes as Labels and as Photoisomerizable Units in Chiral Polyisocyanates. Macromol. Chem. Phys. 1993, 194, 101–116. 10.1002/macp.1993.021940108
  • Fujiki, M. Helix Magic. Thermo-Driven Chiroptical Switching and Screw-Sense Inversion of Flexible Rod Helical Polysilylene. J. Am. Chem. Soc. 2000, 122, 3336–3343. DOI: 10.1021/ja9938581.
  • Koe, J. R.; Fujiki, M.; Nakashima, H. First Optically Active Diarylpolysilanes: Facile Helical Screw Sense Control with Only (S)-Enantiopure Side Chains. J. Am. Chem. Soc. 1999, 121, 9734–9735. DOI: 10.1021/ja991680c.
  • Frey, H.; Moeller, M.; Matyjaszewski, K. Chiral Poly(dipentylsily1ene) Copolymers. Macromolecules 1994, 27, 1814–1818. DOI: 10.1021/ma00085a022.
  • Obata, K.; Kira, M. Temperature Dependent CD Spectra of Poly(Dihexylsilylene)s with Terminal Chiral Groups. Coupled Cotton Effects of Silicon σ Chains. Macromolecules 1998, 31, 4666–4668. DOI: 10.1021/ma980427e.
  • Obata, K.; Kabuto, C.; Kira, M. Induction of Helical Chirality in Linear Oligosilanes by Terminal Chiral Substituents. J. Am. Chem. Soc. 1997, 119, 11345–11346. DOI: 10.1021/ja972543n.
  • Koe, J. R.; Fujiki, M.; Motonaga, M.; Nakashima, H. Temperature-Dependent Helix–Helix Transition of an Optically Active Poly(Diarylsilylene). Chem. Commun. 2000, 389–390. DOI: 10.1039/a909368k.
  • Nakashima, H.; Koe, J. R.; Torimitsu, K.; Fujiki, M. Transfer and Amplification of Chiral Molecular Information to Polysilylene Aggregates. J. Am. Chem. Soc. 2001, 123, 4847–4848. DOI: 10.1021/ja010119n.
  • Nakashima, H.; Fujiki, M.; Koe, J. R.; Motonaga, M. Solvent and Temperature Effects on the Chiral Aggregation of Poly(Alkylarylsilane)s Bearing Remote Chiral Groups. J. Am. Chem. Soc. 2001, 123, 1963–1969. DOI: 10.1021/ja000869h.
  • Sanji, T.; Takase, K.; Sakurai, H. Helical-Sense Programming through Polysilane-Poly(Triphenylmethyl Methacrylate) Block Copolymers. J. Am. Chem. Soc. 2001, 123, 12690–12691. DOI: 10.1021/ja0167250.
  • Sanji, T.; Takase, K.; Sakurai, H. The Induction of a Helical Conformation in Polysilanes with an Optically Active Terminal Group. BCSJ 2004, 77, 1607–1611. DOI: 10.1246/bcsj.77.1607.
  • Holder, S. J.; Achilleos, M.; Jones, R. G. Increasing Molecular Weight Parameters of a Helical Polymer through Polymerization in a Chiral Solvent. J. Am. Chem. Soc. 2006, 128, 12418–12419. DOI: 10.1021/ja064587e.
  • Dellaportas, P.; Jones, R. G.; Holder, S. J. Induction of Preferential Helical Screw Senses in Optically Inactive Polysilanes via Chiral Solvation. Macromol. Rapid Commun. 2002, 23, 99–103. DOI: 10.1002/1521-3927(20020101)23:2<99::AID-MARC99>3.3.CO;2-D.
  • Nakashima, H.; Fujiki, M. Precise Control of Optical Properties and Global Conformations by Marked Substituent Effects in Poly(Alkyl(Methoxyphenyl)Silane) Homo- and Copolymers. Macromolecules 2001, 34, 7558–7564. DOI: 10.1021/ma0108564.
  • Nespurek, S.; Kadashchuk, A.; Skryshevski, Y.; Fujii, A.; Yoshino, K. Origin of Broad Visible Luminescence in Poly[Methyl(Phenyl)Silylene] Thin Films. J. Lumin. 2002, 99, 131–140. DOI: 10.1016/S0022-2313(02)00329-0.
  • Ito, O.; Terajima, M.; Azumi, T.; Matsumoto, N.; Takeda, K.; Fujino, M.; Azumi, T. The Photoluminescence of Poly(Methylphenylsilylene): the Origin of the Long-Wavelength Broadband. Macromolecules 1989, 22, 1718–1718. DOI: 10.1021/ma00194a036.
  • Matsukawa, K.; Fukui, S.; Higashi, N.; Niwa, M.; Inoue, H. Preparation and Properties of Organic-Inorganic Hybrid Thin Films Containing Polysilane Segments from Polysilane-Methacrylate Copolymers. Chem. Lett. 1999, 28, 1073–1074. DOI: 10.1246/cl.1999.1073.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.