309
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

First study of rhodium(I) complexes with chiral sulfur-containing terpenoids as catalytic systems for ketone hydrosilylation

ORCID Icon &
Pages 376-387 | Received 20 Aug 2019, Accepted 29 Nov 2019, Published online: 12 Dec 2019

References

  • (a) Patei, R. N. Biocatalytic Synthesis of Chiral Alcohols and Amino Acids for Development of Pharmaceuticals. Biomolecules. 2013, 3, 741–777. DOI: 10.3390/biom3040741. (b) Carreira, E. M.; Aggarwal, V. K.; Arai, N.; Bergin, E.; Santanilla, A. B. Science of Synthesis: Stereoselective Synthesis. In Molander, G. A., Ed.; Thieme: Stuttgart, 2010; Vol. 2. (c) Ohkuma, T.; Noyori, R. The Handbook of Homogeneous Hydrogenation. In de Vries, J. G., Elsevier, C. J., Eds.; Wiley VCH: Weinheim, 2007; Vol. 3.
  • (a) Seliger, J.; Oestreich, M. Making the Silylation of Alcohols Chiral: Asymmetric Protection of Hydroxy Groups. Chem. Eur. Jr. 2019, 25, 9358–9365. (b) Sartori, G.; Ballini, R.; Bigi, F.; Bosica, G.; Maggi, R.; Righi, P. Protection (and Deprotection) of Functional Groups in Organic Synthesis by Heterogeneous Catalysis. Chem. Rev. 2004, 104, 199–250. DOI: 10.1021/cr0200769. doi:10.1002/chem.201900792.
  • Arena, C. G. Recent Progress in the Asymmetric Hydrosilylation of Ketones and Imines. Mini Rev. Org. Chem. 2009, 6, 159–167. DOI: 10.2174/157019309788922766.
  • Gaich, T.; Mulzer, J. Chiral Pool Synthesis: Starting From Terpenes. In Comprehensive Chirality. In Carreira, E. M.; Yamamoto, H. Eds.; Elsevier Science: Amsterdam, 2012. p. 163. DOI: 10.1016/b978-0-08-095167-6.00202-0.
  • Midland, M. M.; Kazubski, A.; Woodling, R. E. Asymmetric Reductions of Prochiral Ketones with Lithium [2-[2-benzyloxy)ethyl]-6,6-dimethylbicyclo[3.1.1]-3-nonyl]-9-boratabicyclo-[3.3.1]nonane (lithium NB-Enantride) and its Derivatives. J. Org. Chem. 1991, 56, 1068–1074. DOI: 10.1021/jo00003a030.
  • Wu, H.-L.; Wu, P.-Y.; Cheng, Y.-N.; Uang, B.-J. Enantioselective Addition of Organozinc Reagents to Carbonyl Compounds Catalyzed by a Camphor Derived Chiral γ-amino Thiol Ligand. Tetrahedron. 2016, 72, 2656–2665. DOI: 10.1016/j.tet.2015.07.038.
  • Gayet, A.; Bolea, C.; Andersson, P. G. Development of New Camphor Based N,S-chiral Ligands and Their Application in Transfer Hydrogenation. Org. Biomol. Chem. 2004, 2, 1887–1893. DOI: 10.1039/b402805h.
  • Uvarov, V. M.; de Vekki, D. A.; Reshetilovskii, V. P.; Skvortsov, N. K. Hydrosilylation of Acetophenone With Diphenylsilane in the Presence of Rhodium(I) Complexes With Chiral Amines. Rus. J. Gen. Chem. 2010, 80, 35–46. DOI: 10.1134/S107036321001007X.
  • de Vekki, D. A.; Uvarov, V. M.; Reznikov, A. N.; Skvortsov, N. K. Synthesis of Platinum Complexes Containing (+)-bornyl and (–)-menthylammonium in the Outer Coordination Sphere and their Catalytic Activity in Hydrosilylation Reactions. Rus. Chem. Bull. Int. Ed. 2008, 57, 349–357. DOI: 10.1007/s11172-008-0054-3.
  • Borovinskaya, E. S.; Uvarov, V. M.; Schael, F.; de Vekki, D. A.; Reschetilowski, W. Kinetic Study and Modeling of the Rh-catalyzed Hydrosilylation of Acetophenone in a Batch Reactor and in a Microreactor. Reac. Kinet. Mech. Cat. 2011, 104, 345–356. DOI: 10.1007/s11144-011-0355-7.
  • Nishiyama, H.; Sakaguchi, H.; Nakamura, T.; Horihata, M.; Kondo, M.; Ioth, K. Chiral And C2-Symmetrical Bis(Oxazolinylpyridine)Rhodium(III) Complexes: Effective Catalysts for Asymmetric Hydrosilylation of Ketones. Organometallics. 1989, 8, 846–848. DOI: 10.1021/om00105a047.
  • Pavlov, V. A. Structural and Configurational Relationships 'Metal Complex–Substrate–Product' in Asymmetric Catalytic Hydrogenation, Hydrosilylation and Cross-Coupling Reactions. Russ. Chem. Rev. 2001, 70, 1037–1065. DOI: 10.1070/RC2001v070n12ABEH000676.
  • Brunner, H.; Kürzinger, A. Asymmetric Catalysis: XL. Enantioselective Hydrosilylation of Ketones by Diphenylsilane With [Rh(cod)(μ-Cl)]2/pyridinethiazolidine Catalysts. J. Organomet. Chem. 1988, 346, 413–424. DOI: 10.1016/0022-328X(88)80142-6.
  • Knoppe, S.; Kothalawala, N.; Jupally, V. R.; Dass, A.; Bürgi, T. Ligand Dependence of the Synthetic Approach and Chiroptical Properties of a Magic Cluster Protected With a Bicyclic Chiral Thiolate. Chem. Commun. 2012, 48, 4630–4632. DOI: 10.1039/c2cc00056c.
  • Weber, S. K. Combination of Chemical Reaction and Analysis. Combination of Chemical Reaction and Analysis. Ph.D. Disseration, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany, 2009.
  • Strijtveen, B.; Kellogg, R. M. Synthesis of (racemization prone) Optically Active Thiols by SN2 Substitution Using Cesium Thiocarboxylates. J. Org. Chem. 1986, 51, 3664–3671. DOI: 10.1021/jo00369a020.
  • Calligaris, M. Structure and Bonding in Metal Sulfoxide Complexes: an Update. Coord. Chem. Rev. 2004, 248, 351–375. DOI: 10.1016/j.ccr.2004.02.005.
  • Dikson, R. S. Homogeneous Catalysis With Compounds of Rhodium and Iridium; D. Reidel publishing company: Dordrecht/Boston/Lancaster, 1985. DOI: 10.1007/978-94-009-5267-6.
  • Carey, F. A. Organic Chemistry; McGraw-Hill: Boston, 2000.
  • Yermakov, A. I.; Khlaifat, A. L.; Qutob, H.; Abramovich, R. A.; Khomyakov, Y. Y. Characteristics of the GC-MS Mass Spectra of Terpenoids (C10H16). Chem. Sci. J. 2010. 2010, 1–10. DOI: 10.4172/2150-3494.1000005.
  • Silverstein, R. M.; Webster F. X.; Kiemle D. J. Spectrometric Identification of Organic Compounds; Wiley: New York, 2005.
  • Rollmann, L. D. Bridge-Splitting Reactions of Rhodium Carbonyl Chloride With Monomeric and Polymeric Ligands. Inorg. Chim. Acta. 1972. 6, 137–140. DOI: 10.1016/S0020-1693(00)91772-9.
  • Marciniec, B. Hydrosilylation: a Comprehensive Review on Recent Advances. In Advances in Silicon Science. Matisons, J., Ed.; Springer Science + Business Media: Berlin, 2009: Vol. 1. DOI: 10.1007/978-1-4020-8172-9.
  • Uvarov, V. M.; Borovinskaya, E. S.; de Vekki, D. A.; Reshetilovskii, V. P. Experimental Study and Simulation of Kinetics of Acetophenone Hydrosilylation With Diphenylsilane in the Presence of Rhodium Complexes in a Microreactor. Rus. J. Gen. Chem. 2010, 80. 2263–2273. DOI: 10.1134/S1070363210110071.
  • Sharma, R. K. Inorganic Reaction Mechanisms; Discovery Publishing House Pvt. Ltd: New Delhi, India, 2011.
  • Kingston, J. V., Scollary G. R. Thiol complexes of rhodium. J. Inorg. Nucl. Chem. 1971, 33, 4373–4375. DOI: 10.1016/0022-1902(71)80550-X.
  • Dale, J. A.; Mosher, H. S. Nuclear Magnetic Resonance Enantiomer Reagents. Configurational Correlations via Nuclear Magnetic Resonance Chemical Shifts of Diastereomeric Mandelate, O-methylmandelate, and α-methoxy-α-trifluoromethylphenylacetate (MTPA) esters. J. Am. Chem. Soc. 1973, 95, 512–519. DOI: 10.1021/ja00783a034.
  • Oac, S.; Togo, H. Reduction of Sulfonic Acids and Related Organosulfur Compounds With Triphenylphosphine-Iodine System. Bull. Chem. Soc. Japan. 1983, 56. 3802–3812. DOI: 10.1246/bcsj.56.3802.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.