124
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis of HZSM-5 zeolites with excellent DME aromatization properties by orthogonal test

, , , , , , & show all
Pages 464-473 | Received 11 Jun 2019, Accepted 03 Jan 2020, Published online: 13 Jan 2020

References

  • Diaz, E.; Ordonez, S.; Vega, A.; Auroux, A.; Coca, J. Benzylation of Benzene over Fe-Modified ZSM-5 Zeolites: Correlation between Activity and Adsorption Properties. Appl. Catal. A 2005, 295, 106–115. DOI: 10.1016/j.apcata.2005.07.059.
  • Fahim, M. A.; Alsahhaf, T. A.; Elkilani, A. Fundamentals of Petroleum Refining; Elsevier: Amsterdam, 2010. DOI: 10.1016/C2009-0-16348-1.
  • French, R.; Czernik, S. Catalytic Pyrolysis of Biomass for Biofuels Production. Fuel Process. Technol. 2010, 91, 25–32. DOI: 10.1016/j.fuproc.2009.08.011.
  • Ni, Y.; Sun, A.; Wu, X.; Hai, G.; Hu, J.; Li, T.; Li, G. The Preparation of Nano-Sized H[Zn, Al]ZSM-5 Zeolite and Its Application in the Aromatization of Methanol. Microporous Mesoporous Mater. 2011, 143, 435–442. DOI: 10.1016/j.micromeso.2011.03.029.
  • Song, Y.; Sun, C.; Shen, W.; Lin, L. Hydrothermal Post-Synthesis of HZSM-5 Zeolite to Enhance the Coke-Resistance of Mo/HZSM-5 Catalyst for Methane Dehydroaromatization. Catal. Lett. 2006, 109, 21–24. DOI: 10.1007/s10562-006-0066-2.
  • Dong, X.; Song, Y.; Lin, W. A New Way to Enhance the Coke-Resistance of Mo/HZSM-5 Catalyst for Methane Dehydroaromatization. Catal. Commun. 2007, 8, 539–542. DOI: 10.1016/j.catcom.2006.02.014.
  • Kecskeméti, A.; Barthos, R.; Solymosi, F. Aromatization of Dimethyl and Diethyl Ethers on Mo2C-Promoted ZSM-5 Catalysts. J. Catal. 2008, 258, 111–120. DOI: 10.1016/j.jcat.2008.06.003.
  • Ereña, J.; Garoña, R.; Arandes, J. M.; Aguayo, A. T.; Bilbao, J. Effect of Operating Conditions on the Synthesis of Dimethyl Ether over a CuO-ZnO-Al2O3/NaHZSM-5 Bifunctional Catalyst. Catal. Today 2005, 107-108, 467–473. DOI: 10.1016/j.cattod.2005.07.116.
  • Rostamizadeh, M.; Taeb, A. Synthesis and Characterization of HZSM-5 Catalyst for Methanol to Propylene (MTP) Reaction. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2016, 46, 665–671. DOI: 10.1080/15533174.2014.988825.
  • Lemraski, A. S.; Behbahani, R. M.; Ghavipour, M.; Hashemi Shahraki, B. Study on Product Distribution and Catalytic Performance of ZSM-5 in Methanol Conversion to Gasoline-Range Hydrocarbons (MTHC). Pet. Sci. Technol. 2016, 34, 1323–1328. DOI: 10.1080/10916466.2016.1200081.
  • Choi, M.; Na, K.; Kim, J.; Sakamoto, Y.; Terasaki, O.; Ryoo, R. Stable Single-Unit-Cell Nanosheets of Zeolite MFI as Active and Long-Lived Catalysts. Nature 2009, 461, 246–249. DOI: 10.1038/nature08288.
  • Seddon, D. Paraffin Oligomerisation to Aromatics. Catal. Today 1990, 6, 351–372. DOI: 10.1016/0920-5861(90)85009-D.
  • Mériaudeau, P.; Naccache, C. Dehydrocyclization of Alkanes over Zeolite-Supported Metal Catalysts: Monofunctional or Bifunctional Route. Catal. Rev. 1997, 39, 5–48. DOI: 10.1080/01614949708006467.
  • Fang, Y.; Tang, J.; Huang, X.; Shen, W.; Song, Y.; Sun, C. Aromatization of Dimethyl Ether over Zn/H-ZSM-5 Catalyst. Chin. J. Catal. 2010, 31, 264–266. DOI: 10.1016/S1872-2067(09)60046-2.
  • Freeman, D.; Wells, R. P. K.; Hutchings, G. J. Conversion of Methanol to Hydrocarbons over Ga2O3/H-ZSM-5 and Ga2O3/WO3 Catalysts. J. Catal. 2002, 205, 358–365. DOI: 10.1006/jcat.2001.3446.
  • Song, Y.; Sun, C.; Shen, W.; Lin, L. Hydrothermal Post-Synthesis of HZSM-5 Zeolite to Enhance the Coke-Resistance of Mo/HZSM-5 Catalyst for Methane Dehydroaromatization Reaction: Reconstruction of Pore Structure and Modification of Acidity. Appl. Catal. A 2007, 317, 266–274. DOI: 10.1016/j.apcata.2006.10.037.
  • Corma, A. State of the Art and Future Challenges of Zeolites as Catalysts. J. Catal. 2003, 216, 298–312. DOI: 10.1016/S0021-9517(02)00132-X.
  • Ogunronbi, K. E.; Al-Yassir, N.; Al-Khattaf, S. New Insights into Hierarchical Metal-Containing Zeolites; Synthesis and Kinetic Modelling of Mesoporous Gallium-Containing ZSM-5 for Propane Aromatization. J. Mol. Catal. A: Chem. 2015, 406, 1–18. DOI: 10.1016/j.molcata.2015.05.005.
  • Na, K.; Choi, M.; Ryoo, R. Recent Advances in the Synthesis of Hierarchically Nanoporous Zeolites. Microporous Mesoporous Mater. 2013, 166, 3–19. DOI: 10.1016/j.micromeso.2012.03.054.
  • Karlsson, A.; Stöcker, M.; Schmidt, R. Composites of Micro-and Mesoporous Materials: simultaneous Syntheses of MFI/MCM-41 like Phases by a Mixed Template Approach. Microporous Mesoporous Mater. 1999, 27, 181–192. DOI: 10.1016/S1387-1811(98)00252-2.
  • Zhang, S. C.; Wen, Z. Y.; Yang, L.; Duan, C. H.; Lu, X. P.; Song, Y. B.; Ge, Q. J.; Fang, Y. W. Controllable Synthesis of Hierarchical Porous Petal-Shaped SAPO-34 Zeolite with Excellent DTO Performance. Microporous Mesoporous Mater. 2019, 274, 220–226. DOI: 10.1016/j.micromeso.2018.08.001.
  • Jiang, Y.; Wang, Y.; Zhao, W.; Huang, J.; Zhao, Y.; Yang, G.; Lei, Y.; Chu, R. Effect of (Si + Al)/CTAB Ratio on Crystal Size of Mesoporous ZSM-5 Structure over Methanol-to-Olefin Reactions. J. Taiwan Inst. Chem. Eng. 2016, 61, 234–240. DOI: 10.1016/j.jtice.2015.12.017.
  • Groen, J.; Pérez-Ramírez, J.; Peffer, L. Formation of Uniform Mesopores in ZSM-5 Zeolite upon Alkaline Post-Treatment? Chem. Lett. 2002, 31, 94–95. DOI: 10.1246/cl.2002.94.
  • Nandi, M.; Talukdar, A. K. Vanadia Loaded Hierarchical ZSM-5 Zeolite: A Promising Catalyst for Epoxidation of Cyclohexene under Solvent Free Condition. J. Porous Mater. 2016, 23, 1143–1154. DOI: 10.1007/s10934-016-0172-5.
  • Ogura, M.; Shinomiya, S-y.; Tateno, J.; Nara, Y.; Kikuchi, E.; Matsukata, M. Formation of Uniform Mesopores in ZSM-5 Zeolite through Treatment in Alkaline Solution. Chem. Lett. 2000, 29, 882–883. DOI: 10.1002/chin.200050227.
  • Chen, G.; Jiang, L.; Wang, L.; Zhang, J. Synthesis of Mesoporous ZSM-5 by One-Pot Method in the Presence of Polyethylene Glycol. Microporous Mesoporous Mater. 2010, 134, 189–194. DOI: 10.1016/j.micromeso.2010.05.025.
  • Zhang, H.; Chu, L.; Xiao, Q.; Zhu, L.; Yang, C.; Meng, X.; Xiao, F.-S. One-Pot Synthesis of Fe-Beta Zeolite by an Organotemplate-Free and Seed-Directed Route. J. Mater. Chem. A 2013, 1, 3254. DOI: 10.1039/c3ta01238g.
  • Cui, W.; Li, X.; Zhou, S.; Weng, J. Investigation on Process Parameters of Electrospinning System through Orthogonal Experimental Design. J. Appl. Polym. Sci. 2007, 103, 3105–3112. DOI: 10.1002/app.25464.
  • Liang, R. J. Orthogonal Test Design for Optimization of the Extraction of Polysaccharides from Phascolosoma Esulenta and Evaluation of Its Immunity Activity. Carbohydr. Polym. 2008, 73, 558. DOI: 10.1016/j.carbpol.2007.12.026.
  • Ghanbari, B.; Zangeneh, F. K.; Rizi, Z. T.; Aghaei, E. Highly Efficient Production of Benzene-Free Aromatics from Methanol over Low-Si/Al-Ratio Alkali-Modified Fe/Zn/HZSM-5. ACS Omega 2018, 3, 18821–18835. DOI: 10.1021/acsomega.8b01380.
  • Xu, L.; Wu, S.; Guan, J.; Wang, H.; Ma, Y.; Song, K.; Xu, H.; Xing, H.; Xu, C.; Wang, Z.; Kan, Q. Synthesis, Characterization of Hierarchical ZSM-5 Zeolite Catalyst and Its Catalytic Performance for Phenol Tert -Butylation Reaction. Catal. Commun. 2008, 9, 1272–1276. DOI: 10.1016/j.catcom.2007.11.018.
  • Sing, K. S. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. DOI: 10.1351/pac198557040603.
  • Niwa, M.; Suzuki, K.; Katada, N.; Kanougi, T.; Atoguchi, T. Ammonia IRMS-TPD Study on the Distribution of Acid Sites in Mordenite. J. Phys. Chem. B 2005, 109, 18749–18757. DOI: 10.1021/jp051304g.
  • Lónyi, F.; Valyon, J. On the Interpretation of the NH3-TPD Patterns of H-ZSM-5 and H-Mordenite. Microporous Mesoporous Mater. 2001, 47, 293–301. DOI: 10.1016/S1387-1811(01)00389-4.
  • Hidalgo, C. V.; Itoh, H.; Hattori, T.; Niwa, M.; Murakami, Y. Measurement of the Acidity of Various Zeolites by Temperature-Programmed Desorption of Ammonia. J. Catal. 1984, 85, 362–369. DOI: 10.1016/0021-9517(84)90225-2.
  • Wang, L.; Wang, Y.; Wang, A.; Li, X.; Zhou, F.; Hu, Y. Highly Acidic Mesoporous Aluminosilicates Assembled from Zeolitic Subunits Generated by Controllable Desilication of ZSM-5 in Na2SiO3 Solution. Microporous Mesoporous Mater. 2013, 180, 242–249. DOI: 10.1016/j.micromeso.2013.06.029.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.