521
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Iron-promoted one-pot approach: Synthesis of isothiocyanates

& ORCID Icon
Pages 485-490 | Received 06 Aug 2019, Accepted 12 Jan 2020, Published online: 10 Feb 2020

References

  • (a) Zheng, N.; McWilliams, J. C.; Fleitz, F. J.; Armstrong, J. D.; Volante, R. P. Palladium Catalyzed Synthesis of Aryl Sulfides from Aryl Triflates. J. Org. Chem. 1998, 63, 9606–9607. DOI: 10.1021/jo9814703 (b) Li, G. Y. The First Phosphine Oxide Ligand Precursors for Transition Metal Catalyzed Cross-Coupling Reactions: C − C, C − N, and C − S Bond Formation on Unactivated Aryl Chlorides. Angew. Chem. Int. Ed. 2001, 40, 1513–1516. DOI: 10.1002/1521-3773 (c) Lv, X.; Bao, W. A β-Keto Ester as a Novel, Efficient, and Versatile Ligand for Copper (I)-Catalyzed C − N, C − O, and C − S Coupling Reactions. J. Org. Chem. 2007, 72, 3863–3867. DOI: 10.1021/jo070443m (d) Sperotto, E.; van Klink, G. P. M.; de Vries, J. G.; van Koten, G. Ligand-Free Copper-Catalyzed C − S Coupling of Aryl Iodides and Thiols. J. Org. Chem. 2008, 73, 5625–5627. DOI: 10.1021/jo800491k (e) Rout, L.; Saha, P.; Jammi, S.; Punniyamurthy, T. Efficient Copper(I) Catalyzed C–S Cross Coupling of Thiols with Aryl Halides in Water. Eur.J. Org. Chem. 2008, 4, 640–643. DOI: 10.1002/ejoc.200700978 (f) Correa, A.; Carril, M.; Bolm, C. Iron-Catalyzed S-Arylation of Thiols with Aryl Iodides. Angew. Chem. Int. Ed. 2008, 47, 2880–2882. DOI: 10.1002/anie.200705668 (g) Buchwald, S. L.; Bolm, C. On the Role of Metal Contaminants in Catalyses with FeCl3. Angew. Chem. Int. Ed. 2009, 48, 5586–5589. DOI: 10.1002/anie.200902237 (h) Chaskar, A. C.; Bandgar, B. P.; Modhave, R. K.; Patil, A. B.; Yewale, S. Novel Synthesis of Anthelmintic Drug 4-Isothiocyanato-4′-Nitrodiphenyl Ether and Its Analogs. Synthetic Commun. 2009, 39, 992–1001. DOI: 10.1080/00397910802448481
  • (a) Mukerjee, A. K.; Ashare, R. Isothiocyanates in the Chemistry of Heterocycles. Chem. Rev. 1991, 91, 1–24. DOI: 10.1021/cr00001a001 (b) Stephensen, H.; Zaragoza, F. Resin-Bound Isothiocyanates and Their Synthetic Equivalents as Intermediates for the Solid-Phase Synthesis of Substituted Thiophenes. J. Org. Chem. 1997, 62, 6096–6097. DOI: 10.1021/cr00001a001.
  • (a) Fernandez, J. M. G.; Mellet, C. O.; Blanco, J. L. J.; Mota, J. F.; Gadelle, A.; CosteSarguet, A.; Defaye, J. Isothiocyanates and Cyclic Thiocarbamates of Alpha,Alpha’-Trehalose, Sucrose, and Cyclomaltooligosaccharides. Carbohydr. Res. 1995, 268, 57–71. DOI: 10.1016/0008-6215(94)00312-4 (b) Nastruzzi, C.; Cortesi, R.; Esposito, E.; Menegatti, E.; Leoni, O.; Iori, R.; Palmieri, S. In Vitro Antiproliferative Activity of Isothiocyanates and Nitriles Generated by Myrosinase-Mediated Hydrolysis of Glucosinolates from Seeds of Cruciferous Vegetables. Agric. Food. Chem. 2000, 48, 3572–3575. DOI: 10.1021/jf000191p.
  • Dyer, E.; Johnson, T. B. Nitro and Amino TriphenylGuanidines. J. Am. Chem. Soc. 1932, 54, 777–787. Chem. Ber.1869, 2, 120-122. DOI: 10.1021/ja01341a048.
  • (a) Larsen, C.; Steliou, K.; Harpp, D. N. Thiocarbonyl Transfer Reagents. J. Org. Chem. 1978, 43, 337–339. DOI: 10.1021/jo00396a035 (b) Larsen, C.; Harpp, D. N. Thiocarbonyl Transfer Reagent Chemistry. Selective Displacements with Formaldehyde Hydrazones and Other Nucleophiles. J. Org. Chem. 1981, 46, 2465–2466. DOI: 10.1021/jo00325a007 (c) Kim, S.; Yi, K. Y. Di-2-Pyridyl Thionocarbonate. A New Reagent for the Preparation of Isothiocyanates and Carbodiimides. Tetrahedron Lett. 1985, 26, 1661–1664. DOI: 10.1016/S0040-4039(00)98578-2.
  • Li, G.; Tajima, H.; Ohtani, T. An Improved Procedure for the Preparation of Isothiocyanates from Primary Amines by Using Hydrogen Peroxide as the DehydrosulfurizationReagent. J. Org. Chem. 1997, 62, 4539–4540. DOI: 10.1021/jo970100w.
  • Nath, J.; Jamir, L.; Patel, B. K. Improved Procedure for the Preparation of Isothiocyanates via Iodine-Mediated Desulfurization of Dithiocarbamic Acid Salts. Green Chem. Lett. Rev. 2011, 4, 1–34. DOI: 10.1080/17518253.2010.486773.
  • Harashadas, M. M.; Srinivas, D.; Yadav, J. S. A General Synthesis of Isothiocyanates Using Claycop. Tetrahedron Lett. 1997, 38, 8743–8744. DOI: 10.1016/S0040-4039(97)10158-7.
  • (a) Boas, U.; Jakobsen, M. H. J. A New Synthesis of Aliphatic Isothiocyanates from Primary Amines, Convenient for in Situ Use. J. Chem. Soc. Chem. Commun. 1995, 19, 1995–1996. DOI: 10.1039/C39950001995 (b) Boas, U.; Pedersen, B.; Christensen, J. B. Tetramethyl Fluoro Formamidinium Hexafluorophoshate – an Improved Synthesis and Some New Uses. Synth. Commun. 1998, 28, 1223–1231. DOI: 10.1080/00397919808005964 (c) Boas, U.; Gertz, H.; Christensen, J. B.; Heegaard, P. M. H. Facile Synthesis of Aliphatic Isothiocyanates and Thioureas on Solid Phase Using Peptide Coupling Reagents. J. Chem. Soc. Chem. Commun. 2004, 45, 269–272. DOI: 10.1016/j.tetlet.2003.10.182.
  • Molina, P.; Alajarin, M.; Arques, A. Convenient Improved Syntheses of Isocyanates or Isothiocyanates from Amines. Synthesis. 1982, 1982, 596–597. DOI: 10.1055/s-1982-29877.
  • Stephensen, H.; Zaragoza, F. Resin-Bound Isothiocyanates and Their Synthetic Equivalents as Intermediates for the Solid-Phase Synthesis of Substituted Thiophenes. J. Org. Chem. 1997, 62, 6096–6097. DOI: 10.1021/jo9709155.
  • (a) Munch, H.; Hansen, J. S.; Pittelkow, M.; Christensen, J. B.; Boas, U. A New Efficient Synthesis of Isothiocyanates from Amines Using di-Tert-Butyl Dicarbonate. Tetrahedron Lett. 2008, 49, 3117–3119. DOI: 10.1016/j.tetlet.2008.03.045 (b) Hodgkins, J. E.; Reeves, W. P. The Modified Kaluza Synthesis. III. The Synthesis of Some Aromatic Isothiocyanates. J. Org. Chem. 1964, 29, 3098–3099. DOI: 10.1021/jo01033a524.
  • Ghosh, H.; Yella, R.; Nath, J.; Patel, B. K. Desulfurization Mediated by Hypervalent Iodine (III): a Novel Strategy for the Construction of Heterocycles. Eur. J. Org. Chem. 2008, 2008, 6189–6196. DOI: 10.1002/ejoc.200800901.
  • (a) Jae Nyoung, K.; Eung, K. R. A Convenient Synthesis of Isothiocyanates from Nitrile Oxides. Tetrahedron Lett. 1993, 34, 8283–8284. DOI: 10.1016/S0040-4039(00)61411-9 (b) Jae Nyoung, K.; Keum, S. J.; Hong, J. L.; Suk Son, J. A Facile One-Pot Preparation of Isothiocyanates from Aldoximes. Tetrahedron Lett. 1997, 38, 1597–1598. DOI: 10.1016/S0040-4039(97)00121-4.
  • Arisawa, M.; Ashikawa, M.; Suwa, A.; Yamaguchi, M. Rhodium-Catalyzed Synthesis of Isothiocyanate from Isonitrile and Sulfur. Tetrahedron Lett. 2005, 46, 1727–1729. DOI: 10.1016/j.tetlet.2005.01.069.
  • Adam, W.; Bargon, R. M.; Bosio, S. G.; Schenk, W. A.; Stalke, D. Direct Synthesis of Isothiocyanates from Isonitriles by Molybdenum-Catalyzed Sulfur Transfer with Elemental Sulfur. J. Org. Chem. 2002, 67, 7037–7041. DOI: 10.1021/jo026042i.
  • Shan, W. G.; Bian, G. F.; Su, W. K.; Liang, X. R. A Facile One-Pot Preparation of Isothiocyanates from N-Formamides and Sulfur Powder with Bis(Trichloromethyl) Carbonate. Org. Prep. Proced. Int. 2004, 36, 283–286. DOI: 10.1080/00304940409355967.
  • Valette, L.; Poulain, S.; Fernandez, X.; Cuvelier, L. L. Efficient and Solvent-Free Microwave-Accelerated Synthesis of Isothiocyanates Using Lawesson’s Reagent. J.Sulfur Chem. 2005, 26, 155–161. DOI: 10.1080/1741599050070144.
  • Fujiwara, S.; Shin-Ike, T.; Sonoda, N.; Aoki, M.; Okada, K.; Miyoshi, N.; Kambe, N. Novel Selenium Catalyzed Synthesis of Isothiocyanates from Isocyanides and Elemental Sulfur. Tetrahedron Lett. 1991, 32, 3503–3506. DOI: 10.1016/0040-4039(91)80817-P.
  • Zhong, B.; Al-Awar, R. S.; Shih, C.; Grimes, J. H.; Vieth, M.; Hamdouchi, C. Novel Route to the Synthesis of 4-Quinolyl Isothiocyanates. Tetrahedron Lett. 2006, 47, 2161–2164. DOI: 10.1016/j.tetlet.2006.01.119.
  • Venkata, B. P.; Madhavi, N. Iron Mediated Desulfurization and C-N Bond Formation: Strategy for the Synthesis of Thioureas. Lett.Org.Chem. 2018, 15, 1025–1029. DOI: 10.2174/1570178615666180412110323.
  • (a) Fadrus, H.; Malý, J. Suppresion of Iron (III) Interference in the Determination of Iron (II) in Water by the 1,10-Phenanthroline Method. Analyst. 1975, 100, 549–554. DOI: 10.1039/an9750000549 (b) Neumann, A.; Olson, T. L.; Scherer, M. Spectroscopic Evidence for Fe(II)-Fe(III) Electron Transfer at Clay Mineral Edge and Basal Sites. Environ. Sci. Technol. 2013, 47, 6969–6977. DOI: 10.1021/es304744v (c) Santana-Casiano, J. M.; González, D.-M.; González, A. G.; Millero, F. J. Fe(III) Reduction in the Presence of Catechol in Sea Water. Aquat. Geochem. 2010, 16, 467–482. DOI: 10.1007/s10498-009-9088-x (d) Pinapati, S.; Usharani, M.; Ramana, T.; Rudraraju, R. R. Synthesis of 2-Arylthio Arylcyanamides from 2-Iodoaryl Isothiocyanates via a One-Pot Three-Component Reaction. New J. Chem. 2017, 41, 8711–8713. DOI: 10.1039/C7NJ01702B (e) Pinapati, S. r.; Mandapati, U. r.; Tamminana, R.; Rudraraju, R. R. A Novel Route to Substituted 2-(N-Arylamino) Benzothiazolesvia Iron-Promoted C-S Bond Formation. ChemistrySelect. 2019, 4, 254–258. DOI: 10.1002/slct.201803441.
  • (a) Pinapati, S.; Mandapati, U.; Rudraraju, R. R. Iron-Mediated Desulphurization towards the Synthesis of 2-Halo Aromatic Isothiocyanates. ChemistrySelect. 2017, 2, 295–299. DOI: 10.1002/slct.201601602 (b) Ramana, T.; Punniyamurthy, T. Preparation of 2-Azido-1-Substituted-1 H-Benzo[d]im-Idazoles Using a Copper-Promoted Three-Component Reaction and Their Further Conversion into 2-Amino and 2-Triazolyl Derivatives. Chem. Eur. J. 2012, 18, 13279–13283. DOI: 10.1002/chem.201202215 (c) Mohan, S.; Bajivali, S. K.; Prasad Rao, K. Cobalt Mediated by Desulfurization toward the Synthesis of Isothiocyanates. Synth. Commun. 2016, 46, 1759–1765. DOI: 10.1080/00397-911.2016.1224351 (d) Chen, C.-Y.; Wong, F. F.; Huang, J.-J.; Lin, S.-K.; Yeh, M.-Y. Desulfurization and Transformation of Isothiocyanates to Cyanamides by Using Sodium Bis(Trimethylsilyl)Amide. Tetrahedron Lett. 2008, 49, 6505–6507. DOI: 10.1016/j.tetlet.2008.08.106.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.