413
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis, structural characterization and antimicrobial activities of cyclochlorotriphosphazene derivatives derived from N-(1-Naphthyl)ethylenediamine

ORCID Icon, , &
Pages 507-515 | Received 11 Oct 2019, Accepted 26 Jan 2020, Published online: 13 Feb 2020

References

  • Shaw, R. A. The Reactions of Phosphazenes with Difunctional and Polyfunctional Nucleophilic Reagents. Phosphorus Sulfur Silicon Relat. Elem. 1989, 45, 103–136. DOI: 10.1080/10426508908046081.
  • Guerch, G.; Labarre, J.-F.; Lahana, R.; Roques, R.; Sournies, F. J. An Answer to the Spiro versus Ansa Dilemma in Cyclophosphazenes. J. Mol. Struct. 1983, 99, 275–282. DOI: 10.1016/0022-2860(83)90030-3.
  • Castera, P.; Faucher, J.-P.; Guerch, G.; Lahana, R.; Mahmoun, A.; Sournies, F.; Labarre, J.-F. An Answer to the SPIRO versus ANSA Dilemma in Cyclophosphazenes. Part VII. Neither SPIRO nor ANSA: The BINO Dicyclotriphosphazenes, N3P3Cl5-[HN-(CH2)n-NH]Cl5P3N3. Inorg. Chim. Acta 1985, 108, 29–33. DOI: 10.1016/S0020-1693(00)84319-4.
  • Coles, S. J.; Davies, D. B.; Eaton, R. J.; Hursthouse, M. B.; Kılıç, A.; Mayer, T. A.; Shaw, R. A.; Çiftçi, G. Y. Chiral Configurations of Spermine-Bridged Cyclotriphosphazatrienes. J. Chem. Soc. Dalton Trans. 2002, 3, 365–370. DOI: 10.1039/b104973a.
  • Murr, E. N.; Lahana, R.; Labarre, J. F. The Dispiro N3P3Cl2 [HN-(CH2)3,4-NH]2 and Trispiro N3P3[HN-(CH2)3-NH]3 Derivatives. J. Mol. Struct. 1984, 117, 73–85. DOI: 10.1016/0022-2860(84)87244-0.
  • Allcock, H. R.; Diefenbach, U.; Pucher, S. R. New Mono- and Tri-Spirocyclotriphosphazenes from the Reaction of (NPCl2)3 with Aromatic Ortho Dinucleophiles. Inorg. Chem. 1994, 33, 3091–3095. DOI: 10.1021/ic00092a013.
  • Brandt, K.; Porwolik-Czomperlik, I.; Siwy, M.; Kupka, T.; Shaw, R. A.; Davies, D. B.; Hursthouse, M. B.; Sykara, G. D. Thermodynamic vs Supramolecular Effects in the Regiocontrol of the Formation of New Cyclotriphosphazene-Containing Chiral Ligands with 1,1-Binaphthyl Units: Spiro vs Ansa Substitution at the N3P3 Ring. J. Am. Chem. Soc. 1997, 119, 12432–12440. DOI: 10.1021/ja972372m.
  • Davies, D. B.; Clayton, T. A.; Eaton, R. J.; Shaw, R. A.; Egan, A.; Hursthouse, M. B.; Sykara, G. D.; Porwolik-Czomperlik, I.; Siwy, M.; Brandt, K. Chiral Configurations of Cyclophosphazenes. J. Am. Chem. Soc. 2000, 122, 12447–12457. DOI: 10.1021/ja0028469.
  • Coles, S. J.; Davies, D. B.; Eaton, R. J.; Kılıç, A.; Shaw, R. A.; Çiftçi, Y. G. Structural and Stereogenic Properties of Spiro- and Ansa-Substituted 1,3-Propanedioxy Derivatives of a Spermine-Bridged Cyclotriphosphazene. Polyhedron 2006, 25, 953–962. DOI: 10.1016/j.poly.2005.10.023.
  • Beşli, S.; Coles, S. J.; Davies, D. B.; Erkovan, A. O.; Hursthouse, M. B.; Kılıç, A. Single-, Double- and Triple-Bridged Derivatives of Cyclotriphosphazenes with an Octafluorohexane-1,6-Diol. Polyhedron 2009, 28, 3593–3599. DOI: 10.1016/j.poly.2009.07.042.
  • Fincham, J. K.; Hursthouse, M. B.; Parkes, H. G.; Shaw, L. S.; Shaw, R. A. The Structures of N3P3(NH2)2Cl4, N3P3(NPPh3)(NH2)Cl4 and N3P3(NPPh3)Cl5 and a Comparison with Other Phosphazenylphosphazenes. The Relationship of Conformation in the Solid State to Conformation in Solution. Acta Crystallogr. B Struct. Sci. 1986, B42, 462–4762. DOI: 10.1107/S0108768186097872.
  • Yıldırım, T.; Bilgin, K.; Çiftçi, G. Y.; Eçik, E. T.; Şenkuytu, E.; Uludağ, Y.; Tomak, L.; Kılıç, A. Synthesis, Cytotoxicity and Apoptosis of Cyclotriphosphazene Compounds as Anti-Cancer Agents. Eur. J. Med. Chem. 2012, 52, 213–220. DOI: 10.1016/j.ejmech.2012.03.018.
  • Bovin, J. O.; Galy, J.; Labarre, J.-F.; Sournies, F. Cyclophosphazenes as Novel Potential Antitumor Agents: X-Ray Crystal Structure of the Octapyrrolidino Cyclotetraphosphazene, N4P4(NC4 H8)8. J. Mol. Struct. 1978, 49, 421–423. DOI: 10.1016/0022-2860(78)87282-2.
  • Zhao, Z.; Guo, Q.; Li, X.; Sun, J.; Nie, Z.; Luo, W. Preparation and Properties of Novel Poly(Phosphazene‐Aryl Amide)s Containing Cyclotriphosphazene Structures. J. Appl. Polym. Sci. 2013, 128, 4368–4377. DOI: 10.1002/app.38650.
  • (a) Bovin, J. O.; Labarre, J. F.; Galy, J. The Crystal Structure of a New Antitumouragent: 2,2,4,4,6,6,8,8-Octapyrrolidinylcyclotetra (Phosphazen), N4P4(NC4H8)8. Acta Crystallogr. B Struct. Crystallogr. Cryst. Chem. 1979, 35, 1182–1186. DOI: 10.1107/S0567740879005847. (b) Sournies, F.; Labarre, J.-F.; Spreafico, F.; Filippeschi, S.; Quan Jin, X. Attempts at the Production of More Selective Antitumourals. J. Mol. Struct. 1986, 147, 161–173. DOI: 10.1016/0022-2860(86)87067-3.
  • de Wolf, H. K.; de Raad, M.; Snel, C.; van Steenbergen, M. J.; Fens, M. H. A. M.; Storm, G.; Hennink, W. E. Biodegradable Poly(2-Dimethylamino Ethylamino)Phosphazene for in Vivo Gene Delivery to Tumor Cells. Effect of Polymer Molecular Weight. Pharm. Res. 2007, 24, 1572–1580.
  • Sournes, F.; Guerch, G.; Labarre, J.-F. On the Antitumor Effectiveness of Aziridinocyclophosphazenes: Crystal and Molecular Structure of the Non-Active 2,2-Bis (1-Aziridinyl)-4,4,6,6-Tetrachlorocyclotriphosphazene, Gem-N3P3Az2Cl4. J. Mol. Struct. 1990, 238, 383–390. DOI: 10.1016/0022-2860(90)85029-I.
  • Huizen, A. A. Aziridinyl Cyclophosphazenes. Ph.D. thesis, University of Groningen, Groningen, The Netherlands, 1984.
  • Sun, J.; Wang, X.; Wu, D. Novel Spirocyclic Phosphazene-Based Epoxy Resin for Halogen-Free Fire Resistance: Synthesis, Curing Behaviors, and Flammability Characteristics. ACS Appl. Mater. Interfaces 2012, 4, 4047–4061. DOI: 10.1021/am300843c.
  • Yıldız, M.; Yılmaz, B.; Dolger, B. Synthesis, Spectral Properties, and Antimicrobial Activity of 2-Arilamino-2,4,4,6,6-Pentachloro-1,3,5,2,4,6-Triazatriphosphines and Poly[Bis(4-Fluorophenylamino)Phosphazene. Russ. J. Gen. Chem. 2007, 12, 2117–2122. DOI: 10.1134/S1070363207120079.
  • Ilter, E. E.; Asmafiliz, N.; Kılıc, Z.; Açık, L.; Yavuz, M.; Bali, E. B.; Solak, A. O.; Büyükkaya, F.; Dal, H.; Hökelek, T. Syntheses, Structural and Electrochemical Investigations, Biological Activities and DNA Interactions of New Spirocyclic Monoferrocenylcyclotriphosphazenes. Polyhedron 2010, 29, 2933–2944. DOI: 10.1016/j.poly.2010.07.017.
  • Inoue, K.; Yamauchi, T.; Itoh, T.; Ihara, E. Ionic Conductivity of Cross-Linked Polymethacrylate Derivatives/Cyclophosphazenes/Li+ Salt Complexes. J. Inorg. Organomet. Polym. Mater. 2007, 17, 367–375. DOI: 10.1007/s10904-007-9126-3.
  • Barbera, J.; Bardaji, M.; Jimenez, J.; Laguna, A.; Martinez, M. P.; Oriol, L.; Serrano, J. L.; Zaragozano, I. Columnar Mesomorphic Organizations in Cyclotriphosphazenes. J. Am. Chem. Soc. 2005, 127, 8994–9002. DOI: 10.1021/ja051042w.
  • Görgülü, A. O.; Koran, K.; Özen, F.; Tekin, S.; Sandal, S. Synthesis, Structural Characterization and Anti-Carcinogenic Activity of New Cyclotriphosphazenes Containing Dioxybiphenyl and Chalcone Groups. J. Mol. Struct. 2015, 1087, 1–10. DOI: 10.1016/j.molstruc.2015.01.033.
  • Baek, H.; Cho, Y.; Lee, C.; Sohn, Y. Synthesis and Antitumor Activity of Cyclotriphosphazene-(Diamine) Platinum(II) Conjugates. Anticancer Drugs 2000, 11, 715–725. DOI: 10.1097/00001813-200010000-00008.
  • Çiftçi, G. Y.; Şenkuytu, E.; Bulut, M.; Durmuş, M. Novel Coumarin Substituted Water Soluble Cyclophosphazenes as “Turn-Off” Type Fluorescence Chemosensors for Detection of Fe3+ Ions in Aqueous Media. J. Fluoresc. 2015, 25, 1819–1830. DOI: 10.1007/s10895-015-1672-4.
  • Ozay, H.; Ozay, O. Synthesis and Characterization of Drug Microspheres Containing Phosphazene for Biomedical Applications. Colloids Surf. A Physicochem. Eng. Asp. 2014, 450, 99–105. DOI: 10.1016/j.colsurfa.2014.03.022.
  • Çıralı, D. E.; Uyar, Z.; Koyuncu, I.; Hacıoğlu, N. Synthesis, Characterization and Catalytic, Cytotoxic and Antimicrobial Activities of Two Novel Cyclotriphosphazene‐Based Multisite Ligands and Their Ru(II) Complexes. Appl. Organometal. Chem. 2015, 29, 536–542. DOI: 10.1002/aoc.3328.
  • Tümer, Y.; Koç, L. Y.; Asmafiliz, N.; Kılıç, Z.; Hökelek, T.; Soltanzade, H.; Açık, L.; Yola, M. L.; Solak, A. O. Phosphorus-Nitrogen Compounds: Part 30. Syntheses and Structural Investigations, Antimicrobial and Cytotoxic Activities and DNA Interactions of Vanillinato-Substituted NN or NO Spirocyclic Monoferrocenyl Cyclotriphosphazenes. J. Biol. Inorg. Chem. 2015, 20, 165–178. DOI: 10.1007/s00775-014-1223-5.
  • Başterzi, N. S.; Koçak, S. B.; Okumuş, A.; Kılıç, Z.; Hökelek, T.; Çelik, Ö.; Türk, M.; Koç, L. Y.; Açık, L.; Aydın, B.; et al. Syntheses, Structural Characterization and Biological Activities of Spiro-Ansa-Spiro-Cyclotriphosphazenes. New J. Chem. 2015, 39, 8825–8839. DOI: 10.1039/C5NJ01530H.
  • Çil, E.; Tanyıldızı, M. A.; Özen, F.; Boybay, M.; Arslan, M.; Görgülü, A. O. Synthesis, Characterization, and Biological-Pharmacological Evaluation of New Phosphazenes Bearing Dioxybiphenyl and Schiff Base Groups. Arch. Pharm. Pharm. Med. Chem. 2012, 345, 476–485. DOI: 10.1002/ardp.201100412.
  • Işiklan, M.; Asmafiliz, N.; Özalp, E. E.; İlter, E. E.; Kılıç, Z.; Çoşut, B.; Yeşilot, S.; Kılıç, A.; Öztürk, A.; Hökelek, T.; et al. Syntheses, Structural Investigations, Biological Activities, and DNA Interactions of New N/O Spirocyclic Phosphazene Derivatives. The NMR Behaviors of Chiral Phosphazenes with Stereogenic Centers upon the Addition of Chiral Solvating Agents. Inorg. Chem. 2010, 49, 7057–7071. DOI: 10.1021/ic100781v.
  • Asmafiliz, N.; Kılıç, Z.; Hayvalı, Z.; Açık, L.; Hökelek, T.; Dal, H.; Öner, Y. Syntheses, Structural Investigations, Biological Activities, and DNA Interactions of New N/O Spirocyclotriphosphazenes. Spectrochim. Acta Part A 2012, 86, 214–223. DOI: 10.1016/j.saa.2011.10.027.
  • Brandt, K.; Kruszynski, R.; Bartczak, T. J.; Porwolik-Czomperlik, I. AIDS-Related Lymphoma Screen Results and Molecular Structure Determination of a New Crown Ether Bearing Aziridinylcyclophosphazene, Potentially Capable of Ion-Regulated DNA Cleavage Action. Inorg. Chim. Acta 2001, 322, 138–144. DOI: 10.1016/S0020-1693(01)00557-6.
  • Siwy, M.; Sȩk, D.; Kaczmarczyk, B.; Jaroszewicz, I.; Nasulewicz, A.; Pelczyñska, M.; Nevozhay, D.; Opolski, A. Synthesis and In Vitro Antileukemic Activity of Some New 1,3-(Oxytetraethylenoxy)Cyclotriphosphazene Derivatives. J. Med. Chem. 2006, 49, 806–810. DOI: 10.1021/jm0490078.
  • Okumuş, A.; Kılıç, Z.; Hökelek, T.; Dal, H.; Açık, L.; Öner, Y.; Koç, L. Y. Phosphorus–Nitrogen Compounds Part 22. Syntheses, Structural Investigations, Biological Activities and DNA Interactions of New Mono and Bis(4-Fluorobenzyl) Spirocyclophosphazenes. Polyhedron 2011, 30, 2896–2907. DOI: 10.1016/j.poly.2011.08.035.
  • Tümer, Y.; Asmafiliz, N.; Kılıç, Z.; Hökelek, T.; Koç, L. Y.; Açık, L.; Yola, M. L.; Solak, A. O.; Öner, Y.; Dündar, D.; et al. Phosphorus–Nitrogen Compounds: Part 28. Syntheses, Structural Characterizations, Antimicrobial and Cytotoxic Activities, and DNA Interactions of New Phosphazenes Bearing Vanillinato and Pendant Ferrocenyl Groups. J. Mol. Struct. 2013, 1049, 112–124. DOI: 10.1016/j.molstruc.2013.06.036.
  • Asmafiliz, N.; Kılıç, Z.; Öztürk, A.; Süzen, Y.; Hökelek, T.; Açık, L.; Çelik, Z. B.; Koç, L. Y.; Yola, M. L.; Üstündağ, Z. Phosphorus-Nitrogen Compounds: Part 25. Syntheses, Spectroscopic, Structural and Electrochemical Investigations, Antimicrobial Activities, and DNA Interactions of Ferrocenyldiaminocyclotriphosphazenes. Phosphorus Sulfur Silicon Relat. Elem. 2013, 188, 1723–1742. DOI: 10.1080/10426507.2013.779273.
  • Okumuş, A.; Bilge, S.; Kılıç, Z.; Öztürk, A.; Hökelek, T.; Yılmaz, F. Phosphorus–Nitrogen Compounds: Part 20: Fully Substituted Spiro-Cyclotriphosphazenic Lariat (PNP-Pivot) Ether Derivatives. Spectrochim. Acta Part A 2010, 76, 401–409. DOI: 10.1016/j.saa.2010.04.007.
  • Okumuş, A.; Elmas, G.; Cemaloğlu, R.; Aydın, B.; Binici, A.; Şimşek, H.; Açık, L.; Türk, M.; Güzel, R.; Kılıç, Z.; et al. Phosphorus-Nitrogen Compounds. Part 35. Syntheses, Spectroscopic and Electrochemical Properties, Antituberculosis, Antimicrobial and Cytotoxic Activities of Mono-Ferrocenyl-Spirocyclotetraphosphazenes. New J. Chem. 2016, 40, 5588–5603. DOI: 10.1039/C6NJ00204H.
  • Konar, V.; Yılmaz, Ö.; Öztürk, A. İ.; Kirbağ, S.; Arslan, M. Antimicrobial Andiological Effects of Bomphos and Phomphos on Bacterial and Yeast Cells. Bioorg. Chem. 2000, 28, 214–225. DOI: 10.1006/bioo.2000.1173.
  • Davarcı, D.; Beşli, S.; Yuksel, F. Reactions of Cyclotriphosphazene with 1,6-Diaminohexane and 1,8-Diaminooctane: Mono-Ansa, Double- and Triple-Bridged Derivatives. Polyhedron 2014, 68, 10–16. DOI: 10.1016/j.poly.2013.10.012.
  • Ture, S. Phosphorus-Nitrogen Compounds: Reinvestigation of the Reactions of Hexachlorocyclotriphosphazene with 1,4-Butane- and 1,6-Hexane-Diols—NMR Studies of the Products. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 1174–1182. DOI: 10.1080/10426507.2016.1160238.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.