141
Views
2
CrossRef citations to date
0
Altmetric
Research Article

H6P2W18O62·14H2O as an efficient catalyst for the green synthesis of α-aminophosphonates from α-amino acids

, ORCID Icon, , , &
Pages 28-35 | Received 04 May 2020, Accepted 18 Jul 2020, Published online: 08 Aug 2020

References

  • Engel, R. Phosphonates as Analogues of Natural Phosphates. Chem. Rev. 1977, 77, 349–367. DOI: 10.1021/cr60307a003.
  • Kaboudin, B.; As-Habei, N. B. Microwave-Assisted Synthesis of α-Aminophosphinic Acids from Hypophosphorus Acid Salts under Solvent Free Conditions. Tetrahedron Lett. 2003, 44, 4243–4245. DOI: 10.1016/S0040-4039.(03)00893-1.
  • Moonen, K.; Laureyn, I.; Stevens, C. V. Synthetic Methods for Azaheterocyclic Phosphonates and Their Biological Activity. Chem. Rev. 2004, 104, 6177–6215. DOI: 10.1021/cr030451c.
  • Schug, K. A.; Lindner, W. Noncovalent Binding between Guanidinium and Anionic Groups: focus on Biological- and Synthetic-Based Arginine/Guanidinium Interactions with Phosph[on]Ate and Sulf[on]Ate Residues. Chem. Rev. 2005, 105, 67–114. DOI: 10.1021/cr040603j.
  • Hughes, A. Amino Acids, Peptides, and Proteins in Organic Chemistry: Modified Amino Acids, Organocatalysis and Enzyme; Wiley-VCH: Weinheim, 2009; pp 189–260.
  • Kukhar, V. P.; Hduson, H. R. Aminophosphonic and Aminophsphinic Acids: Chemistry and Biological Activity; John Wiley & Sons: Chichester, 2000.
  • Kafarski, P.; Lejczak, B. Aminophosphonic Acids of Potential Medical Importance. Curr. Med. Chem. Anticancer. Agents. 2001, 1, 301–312. DOI: 10.2174/1568011013354543.
  • Subramanyam, C.; Thaslim Basha, S.; Madhava, G.; Nayab Rasool, S.; Adam, S.; Durga Srinivasa Murthy, S.; Naga Raju, C. Synthesis, Spectral Characterization and Bioactivity Evaluation of Novel α-Aminophosphonates. Phosphorus Sulfur Silicon Relat. Elem. 2017, 192, 267–270. DOI: 10.1080/10426507.2016.1225056.
  • Sivala, M. R.; Devineni, S. R.; Golla, M.; Medarametla, V.; Pothuru, G. K.; Chamsarthi, N. R. A Heterogeneous Catalyst, SiO2-ZnBr2: An Efficient Neat Access for α-Aminophosphonates and Antimicrobial Activity Evaluation. J. Chem. Sci. 2016, 128, 1303–1313. DOI: 10.1007/s12039-016-1113-1.
  • Awad, M. K.; Abdel-Aal, M. F.; Atlam, F. M.; Hekal, H. A. Synthesis of New α-Amino Phosphonates Containing 3-Amino-4(3H) Quinazolinone Moiety as Anticancer and Antimicrobial Agents: DFT, NBO, and Vibrational Studies. Curr. Org. Synth. 2018, 15, 286–296. DOI: 10.2174/1570179414666170703141629.
  • Awad, M. K.; Abdel-Aal, M. F.; Atlam, F. M.; Hekal, H. A. Design, Synthesis, Molecular Modeling, and Biological Evaluation of Novel α-Aminophosphonates Based Quinazolinone Moiety as Potential Anticancer Agents: DFT, NBO and Vibrational Studies. J. Mol. Struct. 2018, 1173, 128–141. DOI: 10.1016/j.molstruc.2018.06.094.
  • Liu, J.; Liao, P.; Hu, J.; Zhu, H.; Wang, Y.; Li, Y.; Li, Y.; He, B. Synthesis and Antitumor Activities of Chiral Dipeptide Thioureas Containing an Alpha-Aminophosphonate Moiety. Molecules 2017, 22, 238. DOI: 10.3390/molecules22020238.
  • Sreelakshmi, P.; Santhisudha, S.; Raghavendra Reddy, G. R.; Subbarao, Y.; Peddanna, K.; Apparao, C.; Reddy, C. S. Nano-Cuo–Au-Catalyzed Solvent-Free Synthesis of α-Aminophosphonates and Evaluation of Their Antioxidant and α-Glucosidase Enzyme Inhibition Activities. Synth. Commun. 2018, 48, 1148–1163. DOI: 10.1080/00397911.2018.1437183.
  • Reddy, N. B.; Sundar, C. S.; Krishna, B. S.; Santhisudha, S.; Sreelakshmi, P.; Nayak, P. K.; Reddy, C. S. Cellulose-SO3H Catalyzed Synthesis of Bis ([Alpha]-Aminophosphonates) and Their Antioxidant Activity. Org. Commun. 2017, 10, 46–55. DOI: 10.25135/acg.oc.8.16.06.422.
  • Xie, D.; Zhang, A.; Liu, D.; Yin, L.; Wan, J.; Zeng, S.; Hu, D. Synthesis and Antiviral Activity of Novel a-Aminophosphonates Containing 6-Fluorobenzothiazole Moiety. Phosphorus Sulfur Silicon Relat. Elem. 2017, 192, 1061–1067. DOI: 10.1080/10426507.2017.1323895.
  • Ouahrouch, A.; Taourirte, M.; Schols, D.; Snoeck, R.; Andrei, G.; Engels, J. W.; Lazrek, H. B. Design, Synthesis, and Antiviral Activity of Novel Ribonucleosides of 1,2,3-Triazolylbenzyl-aminophosphonates. Arch. Pharm. 2016, 349, 30–41. DOI: 10.1002/ardp.201500292.
  • Sujatha, B.; Mohan, S.; Subramanyam, C.; Prasada Rao, K. Microwave-Assisted Synthesis and anti-Inflammatory Activity Evaluation of Some Novel α-Aminophosphonates. Phosphorus Sulfur Silicon Relat. Elem. 2017, 192, 1110–1113. DOI: 10.1080/10426507.2017.1331233.
  • Che, J-y.; Xu, X-y.; Tang, Z-l.; Gu, Y-c.; Shi, D-q. Synthesis and Herbicidal Activity Evaluation of Novel α-Amino Phosphonate Derivatives Containing a Uracil Moiety. Bioorg. Med. Chem. Lett. 2016, 26, 1310–1313. DOI: 10.1061/j.bmcl.2016.01.010.
  • Occhipinti, A.; Berlicki, Ł.; Giberti, S.; Dziedzioła, G.; Kafarski, P.; Forlani, G. Effectiveness and Mode of Action of Phosphonate Inhibitors of Plant Glutamine Synthetase. Pest Manag. Sci. 2010, 66, 51–58. DOI: 10.1002/ps.1830.
  • Srinivasulu, D.; Reddy, M. V. B.; Rajasekhar, D.; Balaji, M.; Nagaraju, C. Design, Synthesis and Antimicrobial Activity of α-Aminophosphonates of Quinoline and Their Molecular Docking Studies against DNA Gyrase A. Lett. Drug Des. Discov. 2013, 10, 967–976. DOI: 10.2174/15701808113109990035.
  • Grzywa, R.; Sieńczyk, M. Phosphonic Esters and Their Application of Protease Control. Curr. Pharm. Des. 2013, 19, 1154–1178. DOI: 10.2174/1381612811319060014.
  • Kabachnik, M. J.; Medved, T. Certain derivatives of aminomethylphosphinic acid. Izv Akad Nauk SSSR Otdelenie Khim Nauk 1953, 6, 1126–1128.
  • Kabachnik, M. J.; Medved, T. New Method of Synthesis of α-Aminoalkyl-Phosphonic acids. IV. Synthesis of α-Aminoalkylphenylphosphinic Acids. Izv. Akad. Nauk. Ser. Khim. 1954, 1024–1026.
  • Fields, E. K. The Synthesis of Esters of Substituted Amino Phosphonic Acids. J. Am. Chem. Soc. 1952, 74, 1528–1531. DOI: 10.1021/ja01126a054.
  • Merino, P.; Lopez, E. M.; Herrera, R. P. Catalytic Enantioselective Hydrophosphonylation of Aldehydes and Imines. Adv. Synth. Catal. 2008, 350, 1195–1208. DOI: 10.1002/adsc.200800131.
  • Olszewski, T. K. Environmentally Benign Syntheses of α-Substituted Phosphonates: Preparation of α-Amino- and α-Hydroxyphosphonates in Water, in Ionic Liquids, and under Solvent-Free Conditions. Synthesis-Stuttgart 2014, 46, 403–429. DOI: 10.1055/s-0033-1338588.
  • Sobhani, S.; Vafaee, A. Molecular Iodine: An Efficient Catalyst for the One-Pot Synthesis of Primary 1-Aminophosphonates. J. Iran. Chem. Soc. 2010, 7, 227–236. DOI: 10.1007/BF03245883.
  • Sun, G. Y.; Hou, J. T.; Dou, J. J.; Lu, J.; Hou, Y. J.; Xue, T.; Zhang, Z. H. Xanthan Sulfuric Acid as an Efficient Biodegradable and Recyclable Catalyst for the One-Pot Synthesis of α-Amino Phosphonates. J. Chin. Chem. Soc. 2010, 57, 1315–1320. DOI: 10.1002/jccs.201000194.
  • Hazeri, N.; Maghsoodlou, M. T.; Habibi-Khorassani, S. M.; Aboonajmi, J.; Lashkari, M.; Sajadikhah, S. S. A Green Protocol for One-Pot Three-Component Synthesis of α-Amino Phosphonates Catalyzed by Succinic Acid. Res. Chem. Intermed. 2014, 40, 1781–1788. DOI: 10.1007/s11164-013-1081-8.
  • Bedolla-Medrano, M.; Hernández-Fernández, E.; Ordóñez, M. Phenylphosphonic Acid as Efficient and Recyclable Catalyst in the Synthesis of α-Aminophosphonates under Solvent-Free Conditions. Synlett 2014, 25, 1145. DOI: 10.1002/chin.201444196.
  • Heydari, A.; Hamadi, H.; Pourayoubi, M. A New One-Pot Synthesis of α-Amino Phosphonates Catalyzed by H3PW12O40. Catal. Commun. 2007, 8, 1224–1226. DOI: 10.1016/j.catcom.2006.11.008.
  • Gallardo-Macias, R.; Nakayama, K. Tin (II) Compounds as Catalysts for the Kabachnik–Fields Reaction under Solvent-Free Conditions: Facile Synthesis of a-Aminophosphonates. Synthesis 2010, 2010, 57–62. DOI: 10.1055/s-0029-1217091.
  • Boroujeni, K. P.; Shirazi, A. N. Silica Gel and Polystyrene Supported Aluminum Chloride as Heterogeneous Catalysts for the Preparation of α-Aminophosphonates. Heteroatom Chem. 2010, 21, 418–422. DOI: 10.1002/hc.20629.
  • Bhagat, S.; Chakraborti, A. K. An Extremely Efficient Three-Component Reaction of Aldehydes/Ketones, Amines, and Phosphites (Kabachnik-Fields Reaction) for the Synthesis of alpha-aminophosphonates catalyzed by magnesium perchlorate . J. Org. Chem. 2007, 72, 1263–1270. DOI: 10.1021/jo062140i.
  • Jafari, A. A.; Nazarpour, M.; Abdollahi-Alibeik, M. CeCl3·7H2O‐Catalyzed One‐Pot Kabachnik–Fields Reaction: A Green Protocol for Three‐Component Synthesis of α‐Aminophosphonates. Heteroatom Chem. 2010, 21, 397–403. DOI: 10.1002/hc.20635.
  • Hosseini-Sarvari, M. TiO2 as a New and Reusable Catalyst for One-Pot Three-Component Syntheses of α-Aminophosphonates in Solvent-Free Conditions. Tetrahedron 2008, 64, 5459–5466. DOI: 10.1016/j.tet.2008.04.016.
  • Maghsoodlou, M. T.; Heydari, R.; Habibi-Khorassani, S. M.; Hazeri, N.; Sajadikhah, S. S.; Rostamizadeh, M.; Lashkari, M. One-Pot, Three-Component Synthesis of α-Amino Phosphonates Using NaHSO4-SiO2 as an Efficient and Reusable Catalyst. Synth. Commun. 2012, 42, 136–143. DOI: 10.1080/00397911.2010.523153.
  • Reddy, B.; Krishna, A. S.; Ganesh, A.; Kumar, G. N. Nano Fe3O4 as Magnetically Recyclable Catalyst for the Synthesis of α-Aminophosphonates in Solvent-Free Conditions. Tetrahedron Lett. 2011, 52, 1359–1362. DOI: 10.1016/j.tetlet.2011.01.074.
  • Sobhani, S.; Falatooni, Z. M.; Honarmand, M. Synthesis of Phosphoric Acid Supported on Magnetic Core–Shell Nanoparticles: A Novel Recyclable Heterogeneous Catalyst for Kabachnik–Fields Reaction in Water. RSC Adv. 2014, 4, 15797–15806. DOI: 10.1002/chin.201449189.
  • Xicun, W.; Zhengjun, Q.; Fang, W.; Mangang, W.; Zhang, Z.; Zheng, L. PEG‐SO3H as Catalyst for 3,4‐Dihydropyrimidones via Biginelli Reaction under Microwave and Solvent‐Free Conditions. Synth. Commun. 2006, 36, 451–456. DOI: 10.1080/00397910500383519.
  • Taheri-Torbati, M.; Eshghi, H.; Rounaghi, S. A.; Shiri, A.; Mirzaei, M. Synthesis, Characterization and Application of Nitrogen–Sulfur-Doped Carbon Spheres as an Efficient Catalyst for the Preparation of Novel α-Aminophosphonates. J. Iran. Chem. Soc. 2017, 14, 1971–1982. DOI: 10.1007/s13738-017-1135-8.
  • Yadav, J. S.; Reddy, B. V. S.; Sreedhar, P. An Eco-Friendly Approach for the Synthesis of α-Aminophosphonates Using Ionic Liquids. Green Chem. 2002, 4, 436–438. DOI: 10.1039/B203934F.
  • Bálint, E.; Tajti, A.; Kalocsai, D.; Matravolgyi, B.; Karaghiosoff, K.; Czugler, M.; Keglevich, G. Synthesis and Utilization of Optically Active α-Aminophosphonate Derivatives by Kabachnik-Fields Reaction. Tetrahedron 2017, 73, 5659–5667. DOI: 10.1016/j.tet.2017.07.060.
  • Belhani, B.; Bechlem, K.; Grib, I.; Cheloufi, H.; Bouasla, R.; Berredjem, M. A Green, One-Pot, Three-Component and Microwave Assisted Synthesis of α-Sulfamidophosphonates. J. Mater. Environ. Sci. 2018, 9, 613–618. DOI: 10.26872/jmes.2018.9.2.67.
  • Kraicheva, I.; Tsacheva, R.; Nikolova, M.; Ancheva, T.; Stoineva, I.; Shivachev, B. Microwave Assisted Synthesis and X-Ray Structure of a Novel Anthracene-Derived Aminophosphonate. Enantioseparation of Two α-Aminophosphonates and Genotoxicity in Vivo. Phosphorus Sulfur Silicon Relat. Elem. 2017, 192, 403–409. DOI: 10.1080/10426507.2016.1247086.
  • Xia, M.; Lu, Y. D. Ultrasound-Assisted One-Pot Approach to Alpha-Amino Phosphonates under Solvent-Free and Catalyst-Free Conditions. Ultrason. Sonochem. 2007, 14, 235–240. DOI: 10.1016/j.ultsonch.2006.04.006.
  • Macarie, L.; Simulescu, V.; Ilia, G. Ultrasonic Irradiation Used in Synthesis of Aminophosphonates. Monatsh. Chem. 2019, 150, 163–171. DOI: 10.1007/s00706-018-2327-3. DOI:
  • Boughaba, S.; Bouacida, S.; Aouf, Z.; Bechiri, O.; Aouf, N. E. H6P2W18O62·14H2O Catalyzed Synthesis, Spectral Characterization and X-Ray Study of α-Aminophosphonates Containing Aminothiazole Moiety. Coc. 2018, 22, 1335–1341. DOI: 10.2174/1385272822666180404145804.
  • Belghiche, R.; Cheraiet, Z.; Berredjem, M.; Abbessi, M.; Aouf, N. E. Efficient Deprotection of Boc Group in Amines and Sulfamides Using Dawson Heteropolyacid Catalyst. Eur. J. Chem. 2012, 3, 305–309. DOI: 10.5155/eurjchem.3.3.305-309.610.
  • Allameh, S.; Heravi, M. M.; Hashemi, M. M.; Bamoharram, F. F. Synthesis of 3-(Aryl)-2-Thioxo-2,3-Dihydroquinazolin-4(1H)-Onederivatives Using Heteropolyacids as Green, Heterogeneousand Recyclable Catalysts. Chin. Chem. Lett. 2011, 22, 131–134. DOI: 10.1016/j.cclet.2010.10.012.
  • Heravi, M. M.; Ranjbar, L.; Derikvand, F.; Alimadadi, B.; Oskooie, H. A.; Bamoharram, F. F. A Three Component One-Pot Procedure for the Synthesis of [1,2,4]Triazolo/Benzimidazolo-Quinazolinone Derivatives in the Presence of H6P2W18O(62).18H2O as a Green and Reusable Catalyst. Mol. Divers. 2008, 12, 181–185. DOI: 10.1007/s11030-008-9086-8.
  • Romanelli, G. P.; Ruiz, D. M.; Hernán Bideberripe, P.; Autino, J. C.; Baronetti, T. G.; Thomasa, H. J. Silica Gel-Supported H6P2W18O62.24H2O: A Reusable Catalyst to Prepare Diphenylmethyl (DPM) Ethers. Arkivoc 2007, 2007, 1–8. DOI: 10.3998/ark.5550190.0008.101.
  • Tayebee, R.; Jarrahi, M. H6P2W18O62/Nanoclinoptilolite as an Efficient Nanohybrid Catalyst in the Cyclotrimerization of Aryl Methyl Ketones under Solvent-Free Conditions. RSC Adv. 2015, 5, 21206–21214. DOI: 10.1039/C5RA01344E.
  • Tayebee, R.; Amini, M. M.; Rostamian, H.; Aliakbari, A. Preparation and Characterization of a Novel Wells-Dawson heteropolyacid-based magnetic inorganic-organic nanohybrid catalyst H6P2W18O62/pyridino-Fe3O4 for the efficient synthesis of 1-amidoalkyl-2-naphthols under solvent-free conditions. Dalton Trans. 2014, 43, 1550–1563. DOI: 10.1039/C3DT51594J.
  • Matveeva, ЕD.; Podrugina, ТА.; Prisyazhnoi, МV.; Zefirov, N. S. Amino Acids in Catalytic Synthesis of α-Aminophosphonates. Moscow Univ. Chem. Bull. 2007, 62, 273–275. DOI: 10.3103/S0027131407050124.
  • Matveeva, E. D.; Zefirov, N. S. Amino Acids in a Three-Component Synthesis of α-Aminophosphonates Derivatives. Russ. J. Org. Chem. 2006, 42, 1237–1238. DOI: 10.1134/S1070428006080240.
  • Matveeva, E. D.; Podrugina, T. A.; Prisyazhnoi, МV.; Rusetskaya, I. N.; Zefirov, N. S. Three-Component Catalytic Method for Synthesis of α-Amino Phosphonates with the Use of α-Amino Acids as Amine Component. Russ. Chem. Bull. 2007, 56, 798–805. DOI: 10.1007/s11172-007-0119-8.
  • Matveeva, E. D.; Podrugina, T. A.; Prisyajnoy, M. V.; Zefirov, N. S. Ketones in the Catalytic Three-Component “One-Pot” Kabachnik-Fields Synthesis of α-Amino Phosphonates. Russ. Chem. Bull. 2006, 55, 1209–1214. DOI: 10.1007/s11172-006-0400-2.
  • Belhani, B.; Berredjem, M.; Le Borgne, M.; Bouaziz, Z.; Lebreton, J.; Aouf, N.-E. A One-Pot Three-Component Synthesis of Novel a Sulfamidophosphonates under Ultrasound Irradiation and Catalyst-Free Conditions. RSC Adv. 2015, 5, 39324–39329. DOI: 10.1039/C5RA03473F.
  • Belhani, B.; Bouzina, A.; Berredjem, M.; Aouf, N.-E. One-Pot Synthesis of Novel Oxazaphosphinanes under Ultrasound Irradiation and Solvent-Free Conditions. Monatsh. Chem. 2015, 146, 1871–1875. DOI: 10.1007/s00706-015-1461-4.
  • Pope, M. T. Heteropoly and Isopolyoxometalates; Springer: New York, 1983.
  • Ciabrini, J. P.; Contant, R.; Fruchart, M. Heteropolyblues: Relationship between Metal Oxygen-Metal Bridges and Reduction Behaviour of Octadeca(Molybdotungsto)Diphosphate Anions. Polyhedron 1983, 2, 1229–1233. DOI: 10.1016/S0277-5387.(00)84366-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.