326
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Physical vapor deposition of SnS:PbS-dithiocarbamate chalcogenide semiconductor thin films: elucidation of optoelectronic and electrochemical features

, ORCID Icon, ORCID Icon &
Pages 36-46 | Received 15 May 2020, Accepted 19 Jul 2020, Published online: 14 Aug 2020

References

  • Jaffri, S. B.; Ahmad, K. S. Augmented Photocatalytic, Antibacterial and Antifungal Activity of Prunosynthetic Silver Nanoparticles. Artif. Cells Nanomed. Biotech. 2018, 46, 127–137. DOI: 10.1080/21691401.2017.1414826.
  • Jaffri, S. B.; Ahmad, K. S. Prunus Cerasifera Ehrh. fabricated ZnO Nano Falcates and Its Photocatalytic and Dose Dependent in Vitro Bio-Activity: Photodegradation and Antimicrobial Potential of Biogenic ZnO Nano Falcates. Open Chem. 2018, 16, 141–154. DOI: 10.1515/chem-2018-0022.
  • Jaffri, S. B.; Ahmad, K. S. Neoteric Environmental Detoxification of Organic Pollutants and Pathogenic Microbes via Green Synthesized ZnO Nanoparticles. Environ. Technol. 2019, 40, 3745–3761. DOI: 10.1080/09593330.2018.1488888.
  • Jaffri, S. B.; Ahmad, K. S. Biomimetic Detoxifier Prunus Cerasifera Ehrh. silver Nanoparticles: innate Green Bullets for Morbific Pathogens and Persistent Pollutants. Envir. Sci. Poll. Res. 2020, 27, 9669–9685. DOI: 10.1007/s11356-020-07626-6.
  • Ahmad, K. S.; Jaffri, S. B. Phytosynthetic Ag Doped ZnO Nanoparticles: Semiconducting Green Remediators: Photocatalytic and Antimicrobial Potential of Green Nanoparticles. Open Chem. 2018, 16, 556–570. DOI: 10.1515/chem-2018-0060.
  • Bainglass, E.; Barman, S. K.; Huda, M. N. Photovoltaic Materials Design by Computational Studies: Metal Sulfides. In Solar Cells, Springer: Cham, 2020; pp 123–138. DOI: 10.1007/978-3-030-36354-3_5.
  • Jaffri, S. B.; Ahmad, K. S. Interfacial Engineering Revolutionizers: Perovskite Nanocrystals and Quantum Dots Accentuated Performance Enhancement in Perovskite Solar Cells. Critic. Rev. Solid State Mat. Sci. 2020, 1–30. DOI: 10.1080/10408436.2020.1758627.
  • Iqbal, T.; Shabbir, U.; Sultan, M.; Tahir, M. B.; Farooq, M.; Mansha, M. S.; Ijaz, M.; Maraj, M. All Ambient Environment‐Based Perovskite Film Fabrication for Photovoltaic Applications. Int. J. Energy Res. 2019, 43, 806–813. DOI: 10.1002/er.4310.
  • Iqbal, T.; Ijaz, M.; Javaid, M.; Rafique, M.; Riaz, K. N.; Tahir, M. B.; Nabi, G.; Abrar, M.; Afsheen, S. An Optimal Au Grating Structure for Light Absorption in Amorphous Silicon Thin Film Solar Cell. Plasmonics 2019, 14, 147–154. DOI: 10.1007/s11468-018-0787-2.
  • Afsheen, S.; Naseer, H.; Iqbal, T.; Abrar, M.; Bashir, A.; Ijaz, M. Synthesis and Characterization of Metal Sulphide Nanoparticles to Investigate the Effect of Nanoparticles on Germination of Soybean and Wheat Seeds. Mat. Chem. Phy. 2020, 252, 123216. DOI: 10.1016/j.matchemphys.2020.123216.
  • Iqbal, T.; Ali, F.; Khalid, N. R.; Tahir, M. B.; Ijaz, M. Facile Synthesis and Antimicrobial Activity of CdS-Ag2S Nanocomposites. Bioorg. Chem. 2019, 90, 103064. DOI: 10.1016/j.bioorg.2019.103064.
  • Iqbal, T.; Ara, G.; Khalid, N. R.; Ijaz, M. Simple Synthesis of Ag-Doped CdS Nanostructure Material with Excellent Properties. Appl. Nanosci. 2020, 10, 23–28. DOI: 10.1007/s13204-019-01044-y.
  • Jaffri, S. B.; Ahmad, K. S.; Ifthikhar, S. Cr2S3 (Et2DTC) Complex and [Cr2S3-MoS2 (Et2DTC)] Bilayer Thin Films: Single Source Stationed Fabrication, Compositional, Optical, Microstructural and Electrochemical Investigation. Envir. Tech. 2019, 1–15. DOI: 10.1080/09593330.2019.1631391.
  • Sharif, S.; Ahmad, K. S. Synthesis and Physiognomic Study of Copper Sulfide Doped Cobalt Sulfide. Mat. Res. Exp. 2019, 6, 046408. DOI: 10.1088/2053-1591/aafb9e.
  • Majid, S.; Ahmad, K. S. Optical and Morphological Properties of Environmentally Benign Cu-Tin Sulphide Thin Films Grown by Physical Vapor Deposition Technique. Mater. Res. Express 2018, 6, 036406. DOI: 10.1088/2053-1591/aaf454.
  • Sharif, S.; Ahmad, K. S.; Akhtar, M. S.; Mehmood, R. F.; Alamgir, M. K.; Malik, M. A. In Situ Synthesis and Deposition of un-Doped and Doped Magnesium Sulfide Thin Films by Green Technique. Optik 2019, 182, 739–744. DOI: 10.1016/j.ijleo.2018.12.108.
  • Ali, N.; Ahmed, R.; Hussain, A.; Fu, Y. Q.; Ali, M.; Ul Haq, B.; AlFaify, S. Preparation and Characterization of Layer-Diffusion Processed InBi2Se4 Thin Films for Photovoltaics Application. Optik 2020, 220, 164935. DOI: 10.1016/j.ijleo.2020.164935.
  • Sebastian, S.; Kulandaisamy, I.; Valanarasu, S.; Yahia, I. S.; Kim, H. S.; Vikraman, D. Microstructural and Electrical Properties Evaluation of Lead Doped Tin Sulfide Thin Films. J. Sol-Gel Sci. Technol. 2020, 93, 52–61. DOI: 10.1007/s10971-019-05169-y.
  • Zhou, Y.; Itoh, H.; Uemura, T.; Naka, K.; Chujo, Y. Preparation, Optical Spectroscopy, and Electrochemical Studies of Novel π-Conjugated Polymer-Protected Stable PbS Colloidal Nanoparticles in a Nonaqueous Solution. Langmuir 2002, 18, 5287–5292. DOI: 10.1021/la011642i.
  • Mandal, A. R.; Bekturganova, A.; Ishteev, A.; Choudhury, S. P.; Karunakaran, G.; Kunetsov, D. Effect of Silver Doping on the Current–Voltage Characteristic of PbS Nanorods. Physica E 2016, 79, 147–151. DOI: 0.1016/j.physe.2015.12.029 DOI: 10.1016/j.physe.2015.12.029.
  • Altıokka, B. Effects of Inhibitor on PbS Thin Films Obtained by Chemical Bath Deposition. Arab. J. Sci. Eng. 2015, 40, 2085–2093. DOI: 10.1007/s13369-015-1680-3.
  • Motlagh, Z. A.; Araghi, M. A. Effect of Film Thickness and Texture Morphology on the Physical Properties of Lead Sulfide Thin Films. Semicond. Sci. Technol. 2016, 31, 025017. DOI: 10.1088/0268-1242/31/2/025017.
  • Stavrinadis, A.; So, D.; Konstantatos, G. Low-Temperature, Solution-Based Sulfurization and Necking of PbS CQD Films. J. Phys. Chem. C. 2016, 120, 20315–20322. DOI: 10.1021/acs.jpcc.6b05858.
  • Mohammed, A. J.; Salim, S. R.; Jaleel, M. S.; Hassan, M. A. Structural Characterization of Lead Sulfide Thin Films by Means of FTIR Analysis after Irradiation of β-Ray. J. British Sci. 2012, 7, 35–37.
  • Bouroushian, M. Electrochemistry of Metal Chalcogenides. Monographs in Electrochemistry; Springer: Berlin, Heidelberg, 2010; pp 50–51. DOI: 10.1007/978-3-642-03967-6_2.
  • Ebrahimi, S.; Yarmand, B.; Naderi, N. High-Performance UV-B Detectors Based on MnxZn1-xS Thin Films Modified by Bandgap Engineering. Sens. Actuat. A 2020, 303, 111832. DOI: 10.1016/j.sna.2020.111832.
  • Purohit, M.; Meena, S. K.; Dashora, A.; Ahuja, B. L. Bandgap Engineering of AgGaS2 for Optoelectronic Devices: First-Principles Computational Technique. In Intelligent Computing Techniques for Smart Energy Systems, Springer: Singapore, 2020; pp 67–74. DOI: 10.1007/978-981-15-0214-9_9.
  • Ravishankar, S.; Balu, A. R.; Usharani, K.; Balamurugan, S.; Prabha, D.; Nagarethinam, V. S. Optical and Magnetic Properties of PbS Thin Films Doped with Fe2+ Ions. Optik 2017, 134, 121–127. DOI: 10.1016/j.ijleo.2017.01.010.
  • Kim, J.; Kim, J.; Yoon, S.; Kang, J. Y.; Jeon, C. W.; Jo, W. Single Phase Formation of SnS Competing with SnS2 and Sn2S3 for Photovoltaic Applications: optoelectronic Characteristics of Thin-Film Surfaces and Interfaces. J. Phys. Chem. C. 2018, 122, 3523–3532. DOI: 10.1021/acs.jpcc.8b00179.
  • Vikraman, D.; Thiagarajan, S.; Karuppasamy, K.; Sanmugam, A.; Choi, J.-H.; Prasanna, K.; Maiyalagan, T.; Thaiyan, M.; Kim, H.-S. Shape-and Size-Tunable Synthesis of Tin Sulfide Thin Films for Energy Applications by Electrodeposition. Appl. Surf. Sci. 2019, 479, 167–176. DOI: 10.1016/j.apsusc.2019.02.056.
  • Johny, J.; Sepulveda-Guzman, S.; Krishnan, B.; Avellaneda, D. A.; Martinez, J. A.; Anantharaman, M. R.; Shaji, S. Tin Sulfide: Reduced Graphene Oxide Nanocomposites for Photovoltaic and Electrochemical Applications. Solar Energy Mat. Solar Cells 2019, 189, 53–62. DOI: 10.1016/j.solmat.2018.09.025.
  • Reddy, N. K.; Ramesh, K.; Ganesan, R.; Reddy, K. R.; Gunasekhar, K. R.; Gopal, E. S. R. Synthesis and Characterisation of co-Evaporated Tin Sulphide Thin Films. Appl. Phys. A. 2006, 83, 133–138. DOI: 10.1007/s00339-005-3475-y.
  • Albers, W.; Haas, C.; Vink, H. J.; Wasscher, J. D. Investigations on SnS. J. Appl. Phys. 1961, 32, 2220–2225. DOI: 10.1063/1.1777047.
  • Son, S.-I.; Shin, D.; Son, Y. G.; Son, C. S.; Kim, D. R.; Park, J. H.; Kim, S.; Hwang, D.; Song, P. Effect of Working Pressure on the Properties of RF Sputtered SnS Thin Films and Photovoltaic Performance of SnS-Based Solar Cells. J. Alloys Comp. 2020, 831, 154626. DOI: 10.1016/j.jallcom.2020.154626.
  • Mousavi, S. L.; Jamali-Sheini, F.; Sabaeian, M.; Yousefi, R. Enhanced Solar Cell Performance of P3HT: PCBM by SnS Nanoparticles. Sol. Energy 2020, 199, 872–884. DOI: 10.1016/j.solener.2020.02.031.
  • Gu, D.; Wang, X.; Liu, W.; Li, X.; Lin, S.; Wang, J.; Rumyantseva, M. N.; Gaskov, A. M.; Akbar, S. A. Visible-Light Activated Room Temperature NO2 Sensing of SnS2 Nanosheets Based Chemiresistive Sensors. Sens. Actuat. B. 2020, 305, 127455. DOI: 10.1016/j.snb.2019.127455.
  • Wang, Q.; Zhou, M.; Zhang, L. A Dual Mode Photoelectrochemical Sensor for Nitrobenzene and L-Cysteine Based on 3D Flower-Like Cu2SnS3@SnS2 Double Interfacial Heterojunction Photoelectrode . J. Hazard. Mater. 2020, 382, 121026. DOI: 10.1016/j.jhazmat.2019.121026.
  • Kuchi, P. S.; Roshan, H.; Sheikhi, M. H. A Novel Room Temperature Ethanol Sensor Based on PbS: SnS2 Nanocomposite with Enhanced Ethanol Sensing Properties. J. Alloys Comp. 2020, 816, 152666. DOI: 10.1016/j.jallcom.2019.152666.
  • Liu, W.; Duan, H.; Wei, D.; Cui, B.; Wang, X. Stability of Diethyl Dithiocarbamate Chelates with Cu (II), Zn (II) and Mn (II). J. Mol. Struct. 2019, 1184, 375–381. DOI: 10.1016/j.molstruc.2019.02.009.
  • Faraj, M. G.; Omar, H. D. The Effect of Substrate Temperature on the Structural Properties of Spray Pyrolysed Lead Sulphide (PbS) Thin Films. ARO 2014, 2, 11–14. DOI: 10.14500/aro.10045.
  • Lakhdar, M. H.; Ouni, B.; Amlouk, M. Thickness Effect on the Structural and Optical Constants of Stibnite Thin Films Prepared by Sulfidation Annealing of Antimony Films. Optik 2014, 125, 2295–2301. DOI: 10.1016/j.ijleo.2013.10.114.
  • Liu, J.; Tao, H.; Cao, Y.; Ackermann, J. Multi-branched CdSe Nanocrystals Stabilized by Weak Ligand for Hybrid Solar Cell Application. J. Nanosci. Nanotechnol. 2014, 14, 2836–2841. DOI: 10.1166/jnn.2014.8612.
  • Patel, J. D.; Mighri, F.; Ajji, A. Room Temperature Synthesis of Aminocaproic Acid-Capped Lead Sulphide Nanoparticles. Mat. Sci. Appl. 2012, 3, 1–14. DOI: 10.4236/msa.2012.32020.
  • Ajibade, P. A.; Oluwalana, A. E. Structural, Optical, Photocatalytic and Electrochemical Studies of PbS Nanoparticles. JNanor. 2020, 61, 18–31. DOI: 10.4028/www.scientific.net/JNanoR.61.18.
  • Sarica, E.; Bilgin, V. Study of Some Physical Properties of Ultrasonically Spray Deposited Silver Doped Lead Sulphide Thin Films. Mat. Sci. Semicon. Proc. 2017, 68, 288–294. DOI: 10.1016/j.mssp.2017.06.034.
  • Portillo, P. M.; Pérez, R. G.; Merino, R. P.; Portillo, M. C.; Téllez, G. H.; Rosas, E. R. Optical and Structural Properties of PbSIn3+ Nanocrystals Grown by Chemical Bath. Thin Solid Films 2016, 616, 800–807. DOI: 10.1016/j.tsf.2016.10.018.
  • Rajbongshi, A.; Kalita, M. P. C.; Singh, F.; Sarma, K. C.; Sarma, B. K. Swift Heavy Ion-Irradiation Effects on Microstructure, Surface Morphology and Optical Properties of PbS Thin Films. Appl. Phy. 2016, 122, 555. DOI: 10.1007/s00339-016-0084-x.
  • Sadovnikov, S. I.; Gusev, A. I. Structure and Properties of PbS Films. J. Alloys Comp. 2013, 573, 65–75. DOI: 10.1016/j.jallcom.2013.03.290.
  • Al-Ghamdi, A. A.; Al-Heniti, S.; Khan, S. A. Structural, Optical and Electrical Characterization of Ag Doped Lead Chalcogenide (PbSe) Thin Films. J. Lumin. 2013, 135, 295–300. DOI: 10.1016/j.jlumin.2012.09.027.
  • Azadi Motlagh, Z.; Azim Araghi, M. E. Effect of Annealing Temperature on Optical and Electrical Properties of Lead Sulfide Thin Films. Mater. Sci. Semicond. Process 2015, 40, 701–707. DOI: 10.1016/j.mssp.2015.07.039.
  • Sun, X.; Gao, K.; Pang, X.; Yang, H.; Volinsky, A. A. Study on the Growth Mechanism and Optical Properties of Sputtered Lead Selenide Thin Films. Appl. Surf. Sci. 2015, 356, 978–985. DOI: 10.1016/j.apsusc.2015.08.195.
  • da Silva Filho, J. M. C.; Ermakov, V. A.; Marques, F. C. Perovskite Thin Film Synthesised from Sputtered Lead Sulphide. Sci. Rep. 2018, 8, 1–8. DOI: 10.1038/s41598-018-19746-8.
  • Cuharuc, A. S.; Kulyuk, L. L.; Lascova, R. I.; Mitioglu, A. A.; Dikusar, A. I. Electrochemical Characterization of PbS Quantum Dots Capped with Oleic Acid and PbS Thin Films—a Comparative Study. Surf. Engin. Applelectrochem. 2012, 48, 193–211. DOI: 10.3103/S1068375512030040.
  • Kaliaraj, G. S.; Ramadoss, A. Nickel–Zinc Sulfide Nanocomposite Thin Film as an Efficient Cathode Material for High-Performance Hybrid Supercapacitors. Mat. Sci. Semicon. Proc. 2020, 105, 104709. DOI: 10.1016/j.mssp.2019.104709.
  • Lee, J. W.; Ahn, T.; Soundararajan, D.; Ko, J. M.; Kim, J. D. Non-Aqueous Approach to the Preparation of Reduced Graphene Oxide/α-Ni(OH)2 Hybrid Composites and Their High Capacitance Behavior. Chem. Commun. (Camb.) 2011, 47, 6305–6307. DOI: 10.1039/C1CC11566A.
  • Çağrı Üst, Ü.; Dağcı, K.; Alanyalıoğlu, M. Electrochemical Approaches for Rearrangement of Lead Sulfide Thin Films Prepared by SILAR Method. Mat. Sci. Semicon. Proc. 2016, 41, 270–276. DOI: 10.1016/j.mssp.2015.09.019.
  • Johny, J.; Sepulveda-Guzman, S.; Krishnan, B.; Avellaneda, D. A.; Aguilar Martinez, J. A.; Shaji, S. Synthesis and Properties of Tin Sulfide Thin Films from Nanocolloids Prepared by Pulsed Laser Ablation in Liquid. Chemphyschem 2017, 18, 1061–1068. DOI: 10.1002/cphc.201601186.
  • Ramos, L. A.; Cavalheiro, É. T. G. Preparation, Characterization and Thermal Decomposition of Sodium and Potassium Salts of Dithiocarbamate. Braz. J. Therm. Anal. 2013, 2, 38. DOI: 10.18362/bjta.v2i1.11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.