556
Views
2
CrossRef citations to date
0
Altmetric
Articles

Addition reactions of a phosphorus triamide to nitrosoarenes and acylpyridines

, &
Pages 940-946 | Received 30 Mar 2020, Accepted 09 Jun 2020, Published online: 25 Sep 2020

References

  • Guo, H.; Fan, Y. C.; Sun, Z.; Wu, Y.; Kwon, O. Phosphine Organocatalysis. Chem. Rev. 2018, 118, 10049–10293. DOI: 10.1021/acs.chemrev.8b00081.
  • Cadogan, J. I. G.; Mackie, R. K. Tervalent Phosphorus Compounds in Organic Synthesis. Chem. Soc. Rev. 1974, 3, 87–137. DOI: 10.1039/cs9740300087.
  • Odinets, I. L.; Aladzheva, I. M. Synthetic Approaches to 1,2-Heteraphosphacyclanes. In Topics in Heterocyclic Chemistry; Bansal, R. Ed.; Springer: Berlin, Heidelberg, 2009; pp 185–228.DOI: 10.1007/7081_2008_13.
  • Fan, Y. C.; Kwon, O. Beyond the Morita-Baylis-Hillman Reaction (n→π*). In Lewis Base Catalysis in Organic Synthesis; Vedejs, E., Denmark, S. E., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2016; pp 715–804. DOI: 10.1002/9783527675142.ch15.
  • Aroyan, C. E.; Dermenci, A.; Miller, S. J. The Rauhut–Currier Reaction: A History and Its Synthetic Application. Tetrahedron 2009, 65, 4069–4084. DOI: 10.1016/j.tet.2009.02.066.
  • Ho, D. G.; Gao, R.; Celaje, J.; Chung, H.-Y.; Selke, M. Phosphadioxirane: A Peroxide from an Ortho-Substituted Arylphosphine and Singlet Dioxygen. Science 2003, 302, 259–262. DOI: 10.1126/science.1089145.
  • Bansal, R. K.; Gupta, N.; Gupta, N. Cycloaddition Reactions of Heterophospholes. Heteroatom Chem. 2004, 15, 271–287. DOI: 10.1002/hc.20002.
  • Cowley, A. H.; Kemp, R. A. Synthesis and Reaction Chemistry of Stable Two-Coordinate Phosphorus Cations (Phosphenium Ions). Chem. Rev. 1985, 85, 367–382. DOI: 10.1021/cr00069a002.
  • McCormack, W. B. Preparation of Substitutes Phospha-Cylopentene Dihalides. U.S. Patents 1953, 2, 736.
  • Jungermann, E.; McBride, J. J.; Clutter, R.; Mais, A. A New Phosphorylation Reaction of Olefins. I. Scope of the Reaction. J. Org. Chem. 1962, 27, 606–610. DOI: 10.1021/jo01049a063.
  • Streubel, R.; Franco, J. M. V.; Schnakenburg, G.; Ferao, A. E. Reactivity of Terminal Phosphinidene versus Li-Cl Phosphinidenoid Complexes in Cycloaddition Chemistry. Chem. Commun. (Camb.) 2012, 48, 5986–5988. DOI: 10.1039/c2cc31851b.
  • Wang, B.; Lake, C. H.; Lammertsma, K. Epimerization of Cyclic Vinylphosphirane Complexes: The Intermediacy of Biradicals. J. Am. Chem. Soc. 1996, 118, 1690–1695. DOI: 10.1021/ja953696i.
  • Fassbender, J.; Schnakenburg, G.; Espinosa Ferao, A.; Streubel, R. Effects of Diminished Steric Protection at Phosphorus on Stability and Reactivity of Oxaphosphirane Complexes. Dalton Trans. 2018, 47, 9347–9354. DOI: 10.1039/c8dt01979g.
  • Lammertsma, K.; Hung, J.; Te; Chand, P.; Gray, G. M. Addition of a Terminal Phosphinidene Complex to a Conjugated Diene. Thermal Rearrangement of a Vinylphosphirane to a 1,4-Adduct. J. Org. Chem. 1992, 57, 6557–6560. DOI: 10.1021/jo00050a035.
  • McClure, C. K.; Cai, B.; Spangler, L. H. Investigations of the Reaction of Pentacovalent Oxaphosphlenes with Isocyanates. Synthetic and Mechanistic Aspects. Phosphorus. Sulfur. Silicon Relat. Elem 1999, 144, 709–712. DOI: 10.1080/10426509908546343.
  • McClure, C. K.; Mishra, P. K.; Grote, C. W. Synthetic Studies toward the Preparation of Phosphonate Analogs of Sphingomyelin and Ceramide 1-Phosphate Using Pentacovalent Organophospholene Methodology. J. Org. Chem. 1997, 62, 2437–2441. DOI: 10.1021/jo962144v.
  • Ramirez, F.; Gulati, A. S.; Smith, C. P. Reaction of Tris(Dialkylamino)Phosphines with Aromatic Aldehydes. I. Nitrobenzaldehydes. Formation of 2,2,2-Triamino-1,3,2-Dioxaphospholanes and Their Conversion into Epoxides. J. Org. Chem. 1968, 33, 13–19. DOI: 10.1021/jo01265a003.
  • Petersen, J. F.; Tortzen, C. G.; Jørgensen, F. P.; Parker, C. R.; Nielsen, M. B. Phosphite-Mediated Conversion of Benzaldehydes into Stilbenes via Umpolung through a Dioxaphospholane Intermediate. Tetrahedron Lett. 2015, 56, 1894–1897. DOI: 10.1016/j.tetlet.2015.02.108.
  • Espinosa Ferao, A. On the Mechanism of Trimethylphosphine-Mediated Reductive Dimerization of Ketones. Inorg. Chem. 2018, 57, 8058–8064. DOI: 10.1021/acs.inorgchem.7b02816.
  • Ramirez, F.; Bhatia, S. B.; Smith, C. P. Reaction of Trialkyl Phosphites with Aromatic Aldehydes. Carboncarbon Condensations from the Reaction of p-Nitrobenzaldehyde and of o-Nitrobenzaldehyde with Trialkyl Phosphites-New Routes to Glycol Phosphates. Tetrahedron 1967, 23, 2067–2080. DOI: 10.1016/0040-4020(67)80040-1.
  • Ramirez, F.; Patwardhan, A. V.; Heller, S. R. The Reaction of Trialkyl Phosphites with Aliphatic Aldehydes. P31 and H1 Nuclear Magnetic Resonance Spectra of Tetraoxyalkyl Phosphoranes. J. Am. Chem. Soc. 1964, 86, 514–516. DOI: 10.1021/ja01057a047.
  • Mukaiyaka, T.; Kuwajima, I.; Ohno, K. The Reactions of Benzoyl Cyanide with Trivalent Phosphorus Compounds. BCSJ. 1965, 38, 1954–1957. DOI: 10.1246/bcsj.38.1954.
  • Miller, E. J.; Zhao, W.; Herr, J. D.; Radosevich, A. T. A Nonmetal Approach to α-Heterofunctionalized Carbonyl Derivatives by Formal Reductive X-H Insertion. Angew. Chem. Int. Ed. Engl. 2012, 51, 10605–10609. DOI: 10.1002/anie.201205604.
  • Liu, Y.; Sun, F.; He, Z. Recent Renewed Interest in the Classical Kukhtin-Ramirez Adducts. Tetrahedron Lett. 2018, 59, 4136–4148. DOI: 10.1016/j.tetlet.2018.10.023.
  • Bunyan, P. J.; Cadogan, J. I. G. 7. The Reactivity of Organophosphorus Compounds. Part XIV. Deoxygenation of Aromatic C-Nitroso-Compounds by Triethyl Phosphite and Triphenylphosphine: A New Cyclisation Reaction. J. Chem. Soc. 1963, 42–49. DOI: 10.1039/jr9630000042.
  • Nykaza, T. V.; Ramirez, A.; Harrison, T. S.; Luzung, M. R.; Radosevich, A. T. Biphilic Organophosphorus-Catalyzed Intramolecular Csp2-H Amination: Evidence for a Nitrenoid in Catalytic Cadogan Cyclizations. J. Am. Chem. Soc. 2018, 140, 3103–3113. DOI: 10.1021/jacs.7b13803.
  • Marinetti, A.; Mathey, F. The Carbene-Like Behavior of Terminal Phosphinidene Complexes toward Olefins. A New Access to the Phosphirane Ring. Organometallics 1984, 3, 456–461. DOI: 10.1021/om00081a021.
  • Zhao, W.; McCarthy, S. M.; Lai, T. Y.; Yennawar, H. P.; Radosevich, A. T. Reversible Intermolecular E-H Oxidative Addition to a Geometrically Deformed and Structurally Dynamic Phosphorous Triamide. J. Am. Chem. Soc. 2014, 136, 17634–17644. DOI: 10.1021/ja510558d.
  • Lee, K.; Blake, A. V.; Tanushi, A.; McCarthy, S. M.; Kim, D.; Loria, S. M.; Donahue, C. M.; Spielvogel, K. D.; Keith, J. M.; Daly, S. R.; et al. Validating the Biphilic Hypothesis of Nontrigonal Phosphorus(III) Compounds. Angew. Chem. Int. Ed. Engl. 2019, 58, 6993–6998. DOI: 10.1002/anie.201901779.
  • Lin, Y.-C.; Hatzakis, E.; McCarthy, S. M.; Reichl, K. D.; Lai, T.-Y.; Yennawar, H. P.; Radosevich, A. T. P-N Cooperative Borane Activation and Catalytic Hydroboration by a Distorted Phosphorous Triamide Platform. J. Am. Chem. Soc. 2017, 139, 6008–6016. DOI: 10.1021/jacs.7b02512.
  • Robinson, T. P.; De Rosa, D. M.; Aldridge, S.; Goicoechea, J. M. E-H Bond Activation of Ammonia and Water by a Geometrically Constrained Phosphorus(III) Compound. Angew. Chem. Int. Ed. Engl. 2015, 54, 13758–13763. DOI: 10.1002/anie.201506998.
  • Robinson, T. P.; Lo, S. K.; De Rosa, D.; Aldridge, S.; Goicoechea, J. M. On the Ambiphilic Reactivity of Geometrically Constrained Phosphorus(III) and Arsenic(III) Compounds: Insights into Their Interaction with Ionic Substrates. Chemistry 2016, 22, 15712–15724. DOI: 10.1002/chem.201603135.
  • Cui, J.; Li, Y.; Ganguly, R.; Inthirarajah, A.; Hirao, H.; Kinjo, R. Metal-Free σ-Bond Metathesis in Ammonia Activation by a Diazadiphosphapentalene. J. Am. Chem. Soc. 2014, 136, 16764–16767. DOI: 10.1021/ja509963m.
  • Lin, Y.-C.; Gilhula, J. C.; Radosevich, A. T. Nontrigonal Constraint Enhances 1,2-Addition Reactivity of Phosphazenes. Chem. Sci. 2018, 9, 4338–4347. DOI: 10.1039/c8sc00929e.
  • Tanushi, A.; Radosevich, A. T. Insertion of a Nontrigonal Phosphorus Ligand into a Transition Metal-Hydride: Direct Access to a Metallohydrophosphorane. J. Am. Chem. Soc. 2018, 140, 8114–8118. DOI: 10.1021/jacs.8b05156.
  • Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. Tables of Bond Lengths Determined by X-Ray and Neutron Diffraction. Part 1. Bond Lengths in Organic Compounds. J. Chem. Soc, Perkin Trans. 1987, 2, S1–S19. DOI: 10.1039/p298700000s1.
  • Nykaza, T. V.; Cooper, J. C.; Li, G.; Mahieu, N.; Ramirez, A.; Luzung, M. R.; Radosevich, A. T. Intermolecular Reductive C-N Cross Coupling of Nitroarenes and Boronic Acids by PIII/PV═O Catalysis . J. Am. Chem. Soc. 2018, 140, 15200–15205. DOI: 10.1021/jacs.8b10769.
  • Zhu, J. S.; Li, C. J.; Tsui, K. Y.; Kraemer, N.; Son, J.-H.; Haddadin, M. J.; Tantillo, D. J.; Kurth, M. J. Accessing Multiple Classes of 2 H-Indazoles: Mechanistic Implications for the Cadogan and Davis-Beirut Reactions. J. Am. Chem. Soc. 2019, 141, 6247–6253. DOI: 10.1021/jacs.8b13481.
  • Cadogan, J. I. G.; Sears, D. J.; Smith, D. M.; Todd, M. J. Reduction of Nitro- and Nitroso-Compounds by Tervalent Phosphorus Reagents. Part V. Reduction of Alkyl- and Methoxy-Nitrobenzenes, and Nitrobenzene by Trialkyl Phosphites. J. Chem. Soc., C 1969, 2813–2819. DOI: 10.1039/j39690002813.
  • Klein, M.; Schnakenburg, G.; Espinosa Ferao, A.; Streubel, R. Streubel, R. Rearrangement and Deoxygenation of 3,3-Bis(2-Pyridyl)Oxaphosphirane Complexes. Dalton Trans. 2016, 45, 2085–2094. DOI: 10.1039/c5dt03404c.
  • McKenna, C. E.; Kashemirov, B. A. Recent Progress in Carbonylphosphonate Chemistry. In New Aspects in Phosphorus Chemistry; Springer: Berlin, Heidelberg, 2002; pp 201–238.
  • Griffiths, D. V.; Griffiths, P. A.; Karim, K.; Whitehead, B. J. Reactions of Carbene Intermediates from the Reaction of Trialkyl Phosphites with Dialkyl Benzoylphosphonates: Intramolecular Cyclisations of 2-Substituted Dialkyl Benzoylphosphonates. J. Chem. Soc, Perkin Trans. 1 1996, 0, 555–561. DOI: 10.1039/p19960000555.
  • Romanova, I. P.; Bogdanov, A. V.; Mironov, V. F.; Shaikhutdinova, G. R.; Larionova, O. A.; Latypov, S. K.; Balandina, A. A.; Yakhvarov, D. G.; Gubaidullin, A. T.; Saifina, A. F.; Sinyashin, O. G. Deoxygenation of Some α-Dicarbonyl Compounds by tris(diethylamino)phosphine in the presence of fullerene C60. J. Org. Chem. 2011, 76, 2548–2557. DOI: 10.1021/jo102332e.
  • Cleveland, G. T.; Radosevich, A. T. A Nontrigonal Tricoordinate Phosphorus Ligand Exhibiting Reversible “Nonspectator” L/X-Switching . Angew. Chem. Int. Ed. Engl. 2019, 58, 15005–15009. DOI: 10.1002/anie.201909686.
  • Molander, G. A.; Cavalcanti, L. N. Nitrosation of Aryl and Heteroaryltrifluoroborates with Nitrosonium Tetrafluoroborate. J. Org. Chem. 2012, 77, 4402–4413. DOI: 10.1021/jo300551m.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.