102
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Chiral methylbenzylammonium salts of aryldithiophosphonic acids containing glucofuranose, allofuranose, and galactopyranose diacetonide scaffolds

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, , , & show all
Pages 86-92 | Received 08 Jul 2020, Accepted 31 Jul 2020, Published online: 14 Sep 2020

References

  • Fraser-Reid, B. O. ; Tatsuta, K. ; Thiem, J. Glycoscience ; Springer-Verlag: Leipzig, 2008; pp 2874.
  • Boysen, M. M. K. Carbohydrates – Tools for Stereoselective Synthesis . Willey-VCH: Weinheim, 2013; pp 430.
  • Castillon, S. ; Claver, C. ; Diaz, Y. C1 and C2-Symmetric Carbohydrate Phosphorus Ligands in Asymmetric Catalysis. Chem. Soc. Rev. 2005, 34 , 702–713. DOI: 10.1039/B400361F.
  • Сеvc, G. Phospholipids Handbook . М. Dekker: NY, 1993; pp 1004.
  • Ding, Y. X. ; Zhou, S. F. A Novel and Facile Route to the Phosphorylation of Carbohydrates by the S-L PTC Modified Procedure of the Atherton-Todd Reaction. Phosphorus Sulfur Silicon. 1994, 92 , 219–223. DOI: 10.1080/10426509408021475.
  • Stadlbauer, S. ; Welzel, P. ; Hey-Hawkins, E. Access to Carbaboranyl Glycophosphonates – An Odyssey. Inorg. Chem. 2009, 48 , 5005–5010. DOI: 10.1021/ic9004278.
  • Grison, C. ; Joliez, S. ; De Clercq, E. ; Coutrot, P. Monoglycosyl, Diglycosyl, and Dinucleoside Methylenediphosphonates: Direct Synthesis and Antiviral Activity. Carbohydr. Res. 2006, 341 , 1117–1129. DOI: 10.1016/j.carres.2006.03.023.
  • Stowell, J. K. ; Widlanski, T. S. A New Method for the Phosphorylation of Alcohols and Phenols. Tetrahedron Lett. 1995, 36 , 1825–1826. DOI: 10.1016/0040-4039(95)00153-4.
  • Nifantiev, E. E. ; Grachev, M. K. ; Burmistrov, S. Y. Amides of Trivalent Phosphorus Acids as Phosphorylating Reagents for Proton-Donating Nucleophiles. Chem. Rev. 2000, 100 , 3755–3800. DOI: 10.1021/cr9601371.
  • Nifantyev, E. E. ; Kukhareva, T. S. ; Khodarev, D. V. ; Vasyanina, L. K. ; Vasil'ev, A. V. New Type of Hypophosphites. Phosphorus Sulfur Silicon Relat. Elem. 2005, 180 , 331–338. DOI: 10.1080/104265090508262.
  • Nifantyev, E. E. ; Kukhareva, T. S. ; Khodarev, D. V. ; Vasyanina, L. K. The Synthesis and Some Chemical Properties of New 1,2:5,6-Di-O-Isopropylidene-α-D-Glucofuranose Hydrophosphoryl Derivatives. Phosphorus Sulfur Silicon Relat. Elem. 2005, 180 , 2733–2743. DOI: 10.1080/104265090968073.
  • Knight, W. B. ; Sem, D. S. ; Smith, K. ; Miziorko, H. M. ; Rendina, A. R. ; Cleland, W. W. Phosphorylated Thiosugars: Synthesis, Properties, and Reactivity in Enzymatic Reactions. Biochemistry. 1991, 30 , 4970–4977. DOI: 10.1021/bi00234a019.
  • Jankowska, J. ; Sobkowska, A. ; Cieślak, J. ; Sobkowski, M. ; Kraszewski, A. ; Stawiński, J. ; Shugar, D. Nucleoside H-Phosphonates. Part 18. Synthesis of Unprotected Nucleoside 5′-H-Phosphonates and Nucleoside 5′-H-Phosphonothioates and Their Conversion into the 5′-Phosphorothioate and 5′-Phosphorodithioate Monoesters. J. Org. Chem. 1998, 63 , 8150–8156. and references therein. DOI: 10.1021/jo980491u.
  • Okruszek, A. ; Olesiak, M. ; Krajewska, D. ; Stec, W. J. Efficient One-Pot Synthesis of 2'-Deoxyribonucleoside 3'-O- and 5'-O-Phosphorodithioates. J. Org. Chem. 1997, 62 , 2269–2272. DOI: 10.1021/jo961801g.
  • Cieślak, J. ; Jankowska, J. ; Stawiński, J. ; Kraszewski, A. Aryl H-Phosphonates. 12. Synthetic and (31)P NMR Studies on the Preparation of Nucleoside H-phosphonothioate and Nucleoside H-phosphonodithioate Monoesters . J. Org. Chem. 2000, 65 , 7049–7054. DOI: 10.1021/jo000729q.
  • Seeberger, P. H. ; Yau, E. ; Caruthers, M. H. 2'-Deoxynucleoside Dithiophosphates: Synthesis and Biological Studies 1. J. Am. Chem. Soc. 1995, 117 , 1472–1478. DOI: 10.1021/ja00110a002.
  • Yang, X. ; Mierzejewski, E. Synthesis of Nucleoside and Oligonucleoside Dithiophosphates. New J. Chem. 2010, 34 , 805–819. DOI: 10.1039/b9nj00618d.
  • Kunst, E. ; Gallier, F. ; Dujardin, G. ; Kirschning, A. Glycosidations of 2-Deoxy Glycosyl Dithiophosphates Using a Tagged Iodine(III)-Promoter for Simple Purification. Org. Biomol. Chem. 2008, 6 , 893–898. DOI: 10.1039/B718642H.
  • Okruszek, A. ; Sierzchala, A. ; Sochacki, M. ; Stec, W. J. The Synthesis of Di- and Oligo(Deoxyribonucleoside Phosphorodithioates) by Dithiaphospholane Method. Tetrahedron Lett. 1992, 33 , 7585–7588. DOI: 10.1016/S0040-4039(00)60831-6.
  • Okruszek, A. ; Olesiak, M. ; Balzarini, J. The Synthesis of Nucleoside 5'-O-(1,1-Dithiotriphosphates). J. Med. Chem. 1994, 37 , 3850–3854. DOI: 10.1021/jm00048a021.
  • Okruszek, A. ; Sierzcha-la, A. ; Fearon, K. L. ; Stec, W. J. Synthesis of Oligo(Deoxyribonucleoside Phosphorodithioate)s by the Dithiaphospholane Approach. J. Org. Chem. 1995, 60 , 6998–7005. DOI: 10.1021/jo00126a060.
  • Ahmadibeni, Y. ; Parang, K. Solid-Phase Synthesis of Dinucleoside and Nucleoside-Carbohydrate Phosphodiesters and Thiophosphodiesters. J. Org. Chem. 2006, 71 , 6693–6696. DOI: 10.1021/jo0611115. and references therein.
  • Nizamov, I. S. ; Nikitin, Y. N. ; Nizamov, I. D. ; Belov, T. G. ; Voloshina, A. D. ; Batyeva, E. S. ; Cherkasov, R. A. α-D-Glucofuranose and α-D-Allofuranose Diacetonides and Silyl Ether of α-D-Glucofuranose Diacetonide in the Dithiophosphorylation Reactions. Heteroatom Chem. 2016, 27 , 345–352. DOI: 10.1002/hc.21344.
  • Nizamov, I. S. ; Nikitin, Y. N. ; Belov, T. G. ; Nizamov, I. D. ; Voloshina, A. D. ; Cherkasov, R. A. 1,2:5,6-Di-O-cyclohexylidene-D-Mannitol and Its Bis(Trimethylsilyl) Ether in the Dithiophosphorylation Reactions. Heteroatom Chem. 2016, 27 , 108–113. DOI: 10.1002/hc.21307.
  • Nizamov, I. S. ; Shumatbaev, G. G. ; Nizamov, I. D. ; Salikhov, R. Z. ; Nikitin, Y. N. ; Shulaeva, M. P. ; Pozdeev, O. K. ; Batyeva, E. S. ; Cherkasov, R. A. Cinchona Alkaloids in the Synthesis of Chiral Salts of Phosphorus Dithioacids on the Basis of 1,2:3,4‐Di‐O‐Isopropylidene‐α‐D‐Galactopyranose. ChemistrySelect 2019, 4 , 1681–1684. DOI: 10.1002/slct.201802783.
  • Nizamov, I. S. ; Timushev, I. D. ; Salikhov, R. Z. ; Nizamov, I. D. ; Nikitin, Y. N. ; Shulaeva, M. P. ; Pozdeev, O. K. ; Voznesenskaya, T. Y. ; Batyeva, E. S. ; Cherkasov, R. A. Pyridine Alkaloid Derivatives of Dithiophosphoric Acids and Their Antimicrobial Evaluation. Asian J. Chem. 2020, 32 , 329–334. DOI: 10.14233/ajchem.2020.22381.
  • Nizamov, I. S. ; Salikhov, R. Z. ; Timushev, I. D. ; Nikitin, Y. N. ; Nizamov, I. D. ; Yakimov, V. Y. ; Shulaeva, M. P. ; Pozdeev, O. K. ; Batyeva, E. S. ; Cherkasov, R. A. ; Ponomareva, A. S. Pyridinium Salts of Dithiophosphoric Acids on the Basis of Nicotinic Acids and Their Isomers, 3-Hydroxypyridine, and 3-Pyridinemethanol. Phosphorus, Sulfur, Silicon, Rel. Elem. 2020, 195 , 226–230. DOI: 10.1080/10426507.2019.1673749.
  • Nizamov, I. S. ; Salikhov, R. Z. ; Nizamov, I. D. ; Nikitin, Y. N. ; Sergeenko, G. G. ; Davletshin, R. R. ; Shulaeva, M. P. ; Pozdeev, O. K. ; Batyeva, E. S. ; Cherkasov, R. A. Synthesis of Chiral Melatonin Salts of Dithiophosphoric Acids Using Monoterpenyl Alcohol. Asian J. Chem. 2020, 32 , 1511–1514. DOI: 10.14233/ajchem.2020.22509.
  • Dang, T. ; Nizamov, I. S. ; Salikhov, R. Z. ; Sabirzyanova, L. R. ; Vorobev, V. V. ; Burganova, T. I. ; Shaidoullina, M. M. ; Batyeva, E. S. ; Cherkasov, R. A. ; Abdullin, T. I. Synthesis and Characterization of Pyridoxine, Nicotine and Nicotinamide Salts of Dithiophosphoric Acids as Antibacterial Agents against Resistant Wound Infection. Bioorg. Med. Chem. 2019, 25 , 100–109. DOI: 10.1016/j.bmc.2018.11.017.
  • Akhmadishina, R. A. ; Kuznetsova, E. V. ; Sadrieva, G. R. ; Sabirzyanova, L. R. ; Nizamov, I. S. ; Akhmedova, G. R. ; Nizamov, I. D. ; Abdullin, T. I. Glutathione Salts of O,O-Diorganyl Dithiophosphoric Acids: Synthesis and Study as Redox Modulating and Antiproliferative Compounds. Peptides. 2018, 99 , 179–188. DOI: 10.1016/j.peptides.2017.10.002.
  • Rohrig, T. P. Postmortem Toxicology. Challenges and Interpretive Considerations ; Academic Press: Amsterdam, 2019; 266 p.
  • Noshahri, N. G. ; Fooladi, J. ; Syldatk, C. ; Engel, U. ; Heravi, M. M. ; Mehrjerdi, M. Z. ; Rudat, J. Screening and Comparative Characterization of Microorganisms from Iranian Soil Samples Showing ω-Transaminase Activity toward a Plethora of Substrates. Catalysts. 2019, 9 , 874. DOI: 10.3390/catal9100874.
  • Laumen, K. ; Brunella, A. ; Graf, M. ; Kittelmann, M. ; Walser, P. ; Ghisalba, O. In Pharmacochemistry Library, Trends of Drug Research II. Proceedings of the 11th Noordwijkerhout-Camerino Symposium, 29 , Ed. H. van der Goot , Elsevier: Amsterdam, 1998; pp 17–28.
  • Yun, H.; Kim, B.-G. Asymmetric Synthesis of (S)-alpha-methylbenzylamine by Recombinant Escherichia Coli Co-Expressing Omega-Transaminase and Acetolactate Synthase. Biosci. Biotechnol. Biochem. 2008, 72, 3030–3033. DOI: 10.1271/bbb.80410.
  • Crutchfield, M. M. ; Dungan, C. H. ; Letcher, J. H. ; Mark, V. ; Van Wazer, J. R. Topics in Phosphorus Chemistry. In P31 Nuclear Magnetic Resonance ; Grayson, M. , Griffith, E. J. , Eds.; John Wiley & Sons: New York, NY, 1967; Vol. 5, pp 492.
  • Colthup, N. B. ; Daly, L. H. ; Wiberley, S. E. Introduction to Infrared and Raman Spectroscopy ; Academic Press: New York, NY, 1964.
  • Slayt (1%) involves 2-phenoxyethanol 1%, N,N-bis(3-aminopropyl) dodecylamine 1.5%, alkyl dimethylbenzylammonium chloride and didecyldimethylammonium chloride 2%, propanol-2 1%, lipase, copolymer of N,N-1,6-hexanediylbis(N-cyanoguanidine) with 1,6-hexadiamine hydrochloride 1% and protease. http://dezr.ru/preparat/slayt. (accessed July 27, 2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.