574
Views
15
CrossRef citations to date
0
Altmetric
Review

Synthesis of α-aminophosphonates by the Kabachnik-Fields reaction

, , , , &
Pages 353-381 | Received 28 Sep 2020, Accepted 09 Nov 2020, Published online: 14 Dec 2020

References

  • Naydenova, E. D.; Todorov, P. T.; Mateeva, P. I.; Zamfirova, R. N.; Pavlov, N. D.; Todorov, S. B. Synthesis and Biological Activity of Novel Small Peptides with Aminophosphonates Moiety as NOP Receptor Ligands. Amino Acids. 2010, 39, 1537–1543. DOI: 10.1007/s00726-010-0624-1.
  • Fields, S. C. Synthesis of Natural Products Containing a C-P Bond. Tetrahedron 1999, 55, 12237–12273. DOI: 10.1016/S0040-4020(99)00701-2.
  • (a) Allen, M. C.; Fuhrer, W.; Tuck, B.; Wade R.; Wood, J. M. Renin Inhibitors. Synthesis of Transition-State Analog Inhibitors Containing Phosphorus Acid Derivatives at the Scissile Bond. J. Med. Chem. 1989, 32, 1652–1661. DOI: 10.1021/jm00127a041. (b) Giannousis P. P.; Bartlett P. A. Phosphorus Amino Acid Analogs as Inhibitors of Leucine Aminopeptidase. J. Med. Chem. 1987, 30, 1603–1609. 10.1021/jm00392a014.
  • Atherton, F. R.; Hassall, C. H.; Lambert, R. W. Synthesis and Structure-Activity Relationships of Antibacterial Phosphonopeptides Incorporating (1-Aminoethyl)Phosphonic Acid and (Aminomethyl)Phosphonic Acid. J. Med. Chem. 1986, 29, 29–40. DOI: 10.1021/jm00151a005.
  • (a) Haffmann, H.; Foerster, H. Darstellung von α-Aminophosphonsäureestern und verwandten Verbindungen. Monatsh. Chem. 1968, 99, 380–388. DOI: 10.1007/BF00908943. (b) Hyun-Joon, H.; Gong-Sil, N. An Efficient Synthesis of Anilinobenzylphosphonates. Synth. Commun. 1992, 22, 1143–1148. DOI: 10.1080/00397919208021098.
  • Gancarz, R.; Wieczorek, J. S. A Useful Method for the Preparation of 1-Aminoalkanephosphonic Acids. Synthesis 1977, 1977, 625–625. DOI: 10.1055/s-1977-24503.
  • Seyferth, D.; Marmor, R. S.; Hilbert, P. Reactions of Dimethylphosphono-Substituted Diazoalkanes. (MeO)2P(O)CR Transfer to Olefins and 1,3-Dipolar Additions of (MeO)2P(O)C(N2)R. J. Org. Chem. 1971, 36, 1379–1386. DOI: 10.1021/jo00809a014.
  • Worms, K. H.; Schmidt-Dunker, M.; Kosolapo, G. M.; Marier, L. Organic Phosphorus Compounds, John Wiley & Sons: New York, 1976, p.1.
  • Barycki, J.; Mastalerz, P.; Soroka, M. Simple Synthesis of 2-Aminoethylphosphonic Acid and Related Compounds. Tetrahedron Lett 1970, 11, 3147–3150. DOI: 10.1016/S0040-4039(00)99713-2.
  • (a) Genet, J. P.; Uziel, J.; Port, M.; Touzin, A. M.; Roland, S.; Thorimbert S.; Tanier, S. A Practical Synthesis of α-Aminophosphonic Acids. Tetrahedron Lett. 1992, 33, 77–80. DOI: 10.1016/S0040-4039(00)77677-5. (b) Qian, C.; Huang, T. One-Pot Synthesis of α-Aminophosphonates from Aldehydes Using Lanthanide Triflate as a Catalyst. J. Org. Chem. 1998, 63, 4125–4128. DOI: 10.1021/jo971242t. (c) Ranu, B. C.; Hajra A.; Jana, U. General Procedure for the Synthesis of α-Amino Phosphonates from Aldehydes and Ketones Using Indium(III) Chloride as a Catalyst. Org. Lett. 1999, 1, 1141–1143. DOI: 10.1021/ol990079g. (d) Manabe, K.; Kobayashi, S. Facile Synthesis of α-Aminophosphonates in Water Using a Lewis Acid–Surfactant-Combined Catalyst. Chem. Commun. 2000, 2000, 669–670. DOI: 10.1039/B000319K. (e) Chanderasekhar, S.; Prakash, S. J.; Jagadeshwar, V.; Narsihmulu, C. Three Component Coupling Catalyzed by TaCl5–SiO2: Synthesis of α-Aminophosphonates. Tetrahedron Lett. 2001, 42, 5561–5563. DOI: 10.1016/S0040-4039(01)01053-X.
  • (a) Firouzabadi, H.; Iranpoor N.; Sobhani, S. Metal Triflate-Catalyzed One-Pot Synthesis of α-Aminophosphonates from Carbonyl Compounds in the Absence of Solvent. Synthesis 2004, 2004, 2692–2696. (b) Sobhani, S.; Safaei, E.; Asadi, M.; Jalili, F.; Tashrifi, Z. Efficient Synthesis of Secondary and Primary Dialkyl α-Aminophosphonates Catalyzed by Tetramethyl-tetra-3,4-pyridinoporphyrazinato Copper(II) Methyl Sulfate Under Solvent-free Conditions. J. Porphyr. Phthalocyanines. 2008, 12, 849–856. DOI: 10.1142/S1088424608000248. (c) Sobhani, S.; Safaei, E.; Asadi M.; Jalili, F. An Eco-friendly Procedure for the Efficient Synthesis of Dialkyl α-Aminophosphonates in Aqueous Media. J. Organo met. Chem., 2008, 693, 3313–3317. DOI: 10.1016/j.jorganchem.2008.07.037. (d) Sobhani S.; Tashrifi, Z. Al(OTf)3 as an Efficient Catalyst for One-Pot Synthesis of Primary Diethyl 1-Aminophosphonates Under Solvent-Free Conditions. Synth. Commun. 2009, 39, 120–131. https://doi.org/10.1080/00397910802369695. DOI: 10.1055/s-2004-831251.
  • Kaboudin, B. A Convenient Synthesis of 1-Aminophosphonates from 1-Hydroxyphosphonates. Tetrahedron Lett 2003, 44, 1051–1053. DOI: 10.1016/S0040-4039(02)02727-2.
  • Tillu, V. H.; Dumbre, D. K.; Wakharkar, R. D.; Choudhary, V. R. One-Pot Three-Component Kabachnik–Fields Synthesis of α-Aminophosphonates Using H-Beta Zeolite Catalyst. Tetrahedron Lett 2011, 52, 863–866. DOI: 10.1016/j.tetlet.2010.11.105.
  • Ranu, B. C.; Hajra, A. A Simple and Green Procedure for the Synthesis of α-Aminophosphonate by a One-Pot Three-Component Condensation of Carbonyl Compound, Amine and Diethyl Phosphite without Solvent and Catalyst. Green Chem 2002, 4, 551–554. DOI: 10.1039/B205747F.
  • Zhan, Z. P.; Li, J. P. Bismuth(III) Chloride–Catalyzed Three‐Component Coupling: Synthesis of α‐Amino Phosphonates. Synth. Commun 2005, 35, 2501–2508. DOI: 10.1080/00397910500212692.
  • Sobhani, S.; Tashrifi, Z. One‐Pot Synthesis of Primary 1‐Aminophosphonates: Coupling Reaction of Carbonyl Compounds, Hexamethyldisilazane, and Diethyl Phosphite caTalyzed by Al(OTf)3. Heteroatom Chem. 2009, 20, 109–115. DOI: 10.1002/hc.20517.
  • Mitragotri, S. D.; Pore, D. M.; Desai, U. V.; Wadgaonkar, P. P. Sulfamic Acid: An Efficient and Cost-Effective Solid Acid Catalyst for the Synthesis of α-Aminophosphonates at Ambient Temperature. Catal. Commun 2008, 9, 1822–1826. DOI: 10.1016/j.catcom.2008.02.011.
  • Heydari, A.; Hamadi, H.; Pourayoubi, M. A New One-Pot Synthesis of α-Amino Phosphonates Catalyzed by H3PW12O40. Catal. Commun 2007, 8, 1224–1226. DOI: 10.1016/j.catcom.2006.11.008.
  • Kaboudin, B.; Zahedi, H. Calcium Chloride as an Efficient Lewis Base Catalyst for the One-Pot Synthesis of α-Aminophosphonic Esters. Chem. Lett. 2008, 37, 540–541. DOI: 10.1246/cl.2008.540.
  • Tian, Y. P.; Xu, F.; Wang, Y.; Wang, J. J.; Li, H. L. PPh3-Catalysed One-Pot Three-Component Syntheses of α-Aminophosphonates under Solvent-Free Conditions. J. Chem. Res. (S) 2009, 2009, 78–80. DOI: 10.3184/030823409X401097.
  • Kassaee, M. Z.; Movahedi, F.; Masrouri, H. ZnO Nanoparticles as an Efficient Catalyst for the One-Pot Synthesis of α-Amino Phosphonates. Synlett 2009, 2009, 1326–1330. DOI: 10.1055/s-0028-1088135.
  • Hosseini-Sarvari, M. TiO2 as a New and Reusable Catalyst for One-Pot Three-Component Syntheses of α-Aminophosphonates in Solvent-Free Conditions. Tetrahedron 2008, 64, 5459–5466. DOI: 10.1016/j.tet.2008.04.016.
  • Kaboudin, B.; Jafari, E. Hydrophosphorylation of IminesCatalyzed by Tosyl Chloride for the Synthesis of α-Aminophosphonates. Synlett 2008, 2008, 1837–1839. DOI: 10.1055/s-2008-1078509.
  • Syamala, M. A Decade of Advances in Three-Component Reactions. Org. Prep. Proced. Int 2005, 37, 103–171. DOI: 10.1080/00304940509354882.
  • Kabachnik, M. I.; Medved, T. Y. New Synthesis of Aminophosphonic Acids. Dokl. Akad. Nauk SSSR 1952, 83, 689–692.
  • Fields, E. K. The Synthesis of Esters of Substituted Amino Phosphonic Acids. J. Am. Chem. Soc. 1952, 74, 1528–1531. DOI: 10.1021/ja01126a054.
  • Pudovik, A. N. Addition of Dialkyl Phosphites to Imines. New Method of Synthesis of Esters of Amino Phosphonic Acids. Dokl. Akad. Nauk SSSR 1952, 83, 865–868.
  • Cherkasov, R. A.; Galkin, V. I. The Kabachnik–Fields Reaction: Synthetic Potential and the Problem of the Mechanism. Russ. Chem. Rev. 1998, 67, 857–882. DOI: 10.1070/RC1998v067n10ABEH000421.
  • Galkin, V. I.; Zvereva, E. R.; Sobanov, A. A.; Galkina, I. V.; Cherkasov, R. A. Kinetics and Mechanism of Kabachnik-Fields Reaction in Dialkylphosphite-Benzaldehyde-Aniline System. Zhur. Obsch. Khim 1993, 63, 2224–2227.
  • Galkina, I. V.; Sobanov, A. A.; Galkin, V. I.; Cherkasov, R. A. Kinetics and Mechanism of the Kabachnik-Fields Reaction: IV. Salicyaldehyde in the Kabachnik-Fields Reaction. Russ. J. Gen. Chem 1998, 68, 1398–1401.
  • Gancarz, R.; Gancarz, I. Failure of Aminophosphonate Synthesis Due to Facile Hydroxyphosphonate - Phosphate Rearrangement. Tetrahedron Lett 1993, 34, 145–148. DOI: 10.1016/S0040-4039(00)60079-5.
  • Gancarz, R. Nucleophilic Addition to Carbonyl Compounds. Competition between Hard (Amine) and Soft (Phosphite) Nucleophile. Tetrahedron 1995, 51, 10627–10632. DOI: 10.1016/0040-4020(95)00634-K.
  • Reddy, B. V. S.; Krishna, A. S.; Ganesh, A. V.; Kumar, G. G. K. S. N. Nano Fe3O4 as Magnetically Recyclable Catalyst for the Synthesis of α-Aminophosphonates in Solvent-Free Conditions. Tetrahedron Lett 2011, 52, 1359–1362. DOI: 10.1016/j.tetlet.2011.01.074.
  • Disale, S. T.; Kale, S. R.; Kahandal, S. S.; Srinivasan, T. G.; Jayaram, R. V. Choline Chloride·2ZnCl2 Ionic Liquid: An Efficient and Reusable Catalyst for the Solvent Free Kabachnik–Fields Reaction. Tetrahedron Lett 2012, 53, 2277–2279. DOI: 10.1016/j.tetlet.2012.02.054.
  • Sheykhan, M.; Mohammadnejad, H.; Akbari, J.; Heydari, A. Superparamagnetic Magnesium Ferrite Nanoparticles: A Magnetically Reusable and Clean Heterogeneous Catalyst. Tetrahedron Lett 2012, 53, 2959–2964. DOI: 10.1016/j.tetlet.2012.03.069.
  • Tang, J.; Wang, L.; Wang, W.; Zhang, L.; Wu, S.; Mao, D. A Facile Synthesis of α-Aminophosphonates Catalyzed by Ytterbium Perfluorooctanoate under Solvent-Free Conditions. J. Fluorine Chem 2011, 132, 102–106. DOI: 10.1016/j.jfluchem.2010.12.002.
  • Zahouily, M.; Elmakssoudi, A.; Mezdar, A.; Rayadh, A.; Sebti, S. Natural Phosphate and Potassium Fluoride Doped Natural Phosphate Catalysed Simple One-Pot Synthesis of α-Aminophosphonates under Solvent-Free Conditions at Room Temperature. Catal. Commun. 2007, 8, 225–230. DOI: 10.1016/j.catcom.2006.06.017.
  • Bhattacharya, A. K.; Rana, K. C. Amberlite-IR 120 Catalyzed Three-Component Synthesis of α-Amino Phosphonates in One-Pot. Tetrahedron Lett 2008, 49, 2598–2601. DOI: 10.1016/j.tetlet.2008.02.102.
  • Patil, A. B.; Patil, D. S.; Bhanage, B. M. ZnO Nanoparticle by Solar Energy and Their Catalytic Application for α-Aminophosphonates Synthesis. Mater. Lett. 2012, 86, 50–53. DOI: 10.1016/j.matlet.2012.07.009.
  • Subba Reddy, G.; Uma Maheswara Rao, K.; Syama Sundar, C.; Sudha, S. S.; Haritha, B.; Swapna, S.; Suresh Reddy, C. Neat Synthesis and Antioxidant Activity of α-Aminophosphonates. Arab. J. Chem. 2014, 7, 833–838. DOI: 10.1016/j.arabjc.2013.01.004.
  • Khatri, C. K.; Satalkar, B. V.; Chaturbhuj, G. U. Sulfated Polyborate Catalyzed Kabachnik-Fields Reaction: An Efficient and Eco-Friendly Protocol for Synthesis of α-Aminophosphonates. Tetrahedron Lett 2017, 58, 694–698. DOI: 10.1016/j.tetlet.2017.01.022.
  • Chandrasekhar, S.; Prakash, S. J.; Jagadeshwar, V.; Narsihmulu, C. Three Component Coupling Catalyzed by TaCl5–SiO2: Synthesis of α-Aminophosphonates. Tetrahedron Lett. 2001, 42, 5561–5563. DOI: 10.1016/S0040-4039(01)01053-X.
  • Heydari, A.; Zarei, M.; Alijanianzadeh, R.; Tavakol, H. One-Pot Synthesis of N-Trimethylsilyloxy-α-Aminophosphonates from Aldehydes Using Lithium Perchlorate/Diethyl Ether as a Catalyst. Tetrahedron Lett. 2001, 42, 3629–3631. DOI: 10.1016/S0040-4039(01)00233-7.
  • Heydari, A.; Javidan, A.; Schaffie, M. Lithium Perchlorate/Diethyl Ether Catalyzed One-Pot Synthesis of α-Hydrazinophosphonates from Aldehydes by a Three-Component Reaction. Tetrahedron Lett. 2001, 42, 8071–8073. DOI: 10.1016/S0040-4039(01)01702-6.
  • Azizi, N.; Saidi, M. R. Synthesis of Tertiary α-Aminophosphonate by One-Pot Three-Component Coupling Mediated by LPDE. Tetrahedron 2003, 59, 5329–5332. DOI: 10.1016/S0040-4020(03)00759-2.
  • Ghosh, R.; Maiti, S.; Chakraborty, A.; Maiti, D. K. In(OTf)3 Catalysed Simple One-Pot Synthesis of α-Aminophosphonates. J. Mol. Catal. A Chem. 2004, 210, 53–57. DOI: 10.1016/j.molcata.2003.09.020.
  • Azizi, N.; Rajabi, F.; Saidi, M. R. A Mild and Highly Efficient Protocol for the One-Pot Synthesis of Primary α-Aminophosphonates under Solvent-Free Conditions. Tetrahedron Lett. 2004, 45, 9233–9236. DOI: 10.1016/j.tetlet.2004.10.092.
  • Kaboudin, B.; Moradi, K. A Simple and Convenient Procedure for the Synthesis of 1-Aminophosphonates from Aromatic Aldehydes. Tetrahedron Lett. 2005, 46, 2989–2991. DOI: 10.1016/j.tetlet.2005.03.037.
  • Heydari, A.; Arefi, A. One-Pot Three-Component Synthesis of α-Aminophosphonate Derivatives. Catal. Commun. 2007, 8, 1023–1026. DOI: 10.1016/j.catcom.2006.10.019.
  • Ambica, S. K.; Taneja, S. C.; Hundal, M. S.; Kapoor, K. K. One-Pot Synthesis of α-Aminophosphonates Catalyzed by Antimony Trichloride Adsorbed on Alumina. Tetrahedron Lett. 2008, 49, 2208–2212. DOI: 10.1016/j.tetlet.2008.02.047.
  • Sobhani, S.; Safaei, E.; Asadi, M.; Jalili, F. An Eco-Friendly Procedure for the Efficient Synthesis of Dialkyl α-Aminophosphonates in Aqueous Media. J. Oranomet. Chem. 2008, 693, 3313–3317. DOI: 10.1016/j.jorganchem.2008.07.037.
  • Rezaei, Z.; Firouzabadi, H.; Iranpoor, N.; Ghaderi, A.; Jafari, M. R.; Jafari, A. A.; Zare, H. R. Design and one-pot synthesis of alpha-aminophosphonates and bis(alpha-aminophosphonates) by iron(III) chloride and cytotoxic activity. Eur. J. Med. Chem. 2009, 44, 4266–4275. DOI: 10.1016/j.ejmech.2009.07.009.
  • Vinu, A.; Kalita, P.; Balasubramanian, V. V.; Oveisi, H.; Selvan, T.; Mano, A.; Chari, M. A.; Reddy, B. V. S. Mesoporous Aluminosilicate Nanocage-Catalyzed Three-Component Coupling Reaction: An Expedient Synthesis of α-Aminophosphonates. Tetrahedron Lett. 2009, 50, 7132–7136. DOI: 10.1016/j.tetlet.2009.10.003.
  • Thirumurugan, P.; Nandakumar, A.; Sudha Priya, N.; Muralidaran, D.; Perumal, P. T. KHSO4-Mediated Synthesis of α-Aminophosphonates under a Neat Condition and Their 31P NMR Chemical Shift Assignments. Tetrahedron Lett. 2010, 51, 5708–5712. DOI: 10.1016/j.tetlet.2010.08.066.
  • Dake, S. A.; Raut, D. S.; Kharat, K. R.; Mhaske, R. S.; Deshmukh, S. U.; Pawar, R. P. Ionic Liquid Promoted Synthesis, Antibacterial and in Vitro Antiproliferative Activity of Novel α-Aminophosphonate Derivatives. Bioorg. Med. Chem. Lett. 2011, 21, 2527–2532. DOI: 10.1016/j.bmcl.2011.02.039.
  • Borse, A. U.; Patil, N. L.; Patil, M. N.; Mali, R. S. Synthetic Utility of Kabachnik–Fields Reaction: A Convenient One-Pot Three-Component Synthesis of N-Phenyl Isoquinolone-1-Phosphonates. Tetrahedron Lett. 2012, 53, 6940–6942. DOI: 10.1016/j.tetlet.2012.10.030.
  • Heo, Y.; Cho, D. H.; Mishra, M. K.; Jang, D. O. Efficient One-Pot Synthesis of α-Aminophosphonates from Aldehydes and Ketones Catalyzed by Ytterbium(III) Triflate. Tetrahedron Lett. 2012, 53, 3897–3899. DOI: 10.1016/j.tetlet.2012.05.068.
  • Ali, N. S.; Zakir, S.; Patel, M.; Farooqui, M. Synthesis of New α aminophosphonate system bearing Indazole moiety and their biological activity . Eur. J. Med. Chem. 2012, 50, 39–43. DOI: 10.1016/j.ejmech.2012.01.024.
  • Reddy, C. B.; Kumar, K. S.; Kumar, M. A.; Reddy, M. V. N.; Krishna, B. S.; Naveen, M.; Arunasree, M. K.; Reddy, C. S.; Raju, C. N.; Reddy, C. D. PEG-SO(3)H Catalyzed Synthesis and Cytotoxicity of α-Aminophosphonates. Eur. J. Med. Chem. 2012, 47, 553–559. DOI: 10.1016/j.ejmech.2011.11.026.
  • Zhang, Y.; Zhu, C. Gold Complex-Catalyzed C-P Bond Formation by Kabachnik–Fields Reactions. Catal. Commun. 2012, 28, 134–137. DOI: 10.1016/j.catcom.2012.08.001.
  • Bhattacharya, A. K.; Raut, D. S.; Rana, K. C.; Polanki, I. K.; Khan, M. S.; Iram, S. Diversity-Oriented Synthesis of α-Aminophosphonates: A New Class of Potential Anticancer Agents. Eur. J. Med. Chem. 2013, 66, 146–152. DOI: 10.1016/j.ejmech.2013.05.036.
  • Reddy, P. S.; Reddy, P. V. G.; Reddy, S. M. Phosphomolybdic Acid Promoted Kabachnik–Fields Reaction: An Efficient One-Pot Synthesis of α-Aminophosphonates from 2-Cyclopropylpyrimidine-4-Carbaldehyde. Tetrahedron Lett. 2014, 55, 3336–3339. DOI: 10.1016/j.tetlet.2014.04.053.
  • Suresh, M.; Kumar, A. S.; Kumar, A. A.; Lavanya, P. Efficient Organocatalytic Multicomponent Synthesis of (α-Aminoalkyl)Phosphonates. Arab. J. Chem. 2016, 9, 787–791. DOI: 10.1016/j.arabjc.2013.04.011.
  • Jian-Yi, C.; Xiao-Yun, X.; Zi-Long, T.; Yu-Cheng, G.; De-Qing, S. Synthesis and Herbicidal Activity Evaluation of Novel α-Amino Phosphonate Derivatives Containing a Uracil Moiety. Bioorg. Med. Chem. Lett. 2016, 26, 1310–1313. DOI: 10.1016/j.bmcl.2016.01.010.
  • Reddy, N. B.; Sundar, C. S.; Rani, C. R.; Rao, K. U. M.; Nayak, S. K.; Reddy, C. S. Triton X-100 Catalyzed Synthesis of α-Aminophosphonates. Arab. J. Chem. 2016, 9, S685–S690. DOI: 10.1016/j.arabjc.2011.07.025.
  • Li, X. C.; Gong, S. S.; Zeng, D. Y.; You, Y. H.; Sun, Q. Highly Efficient Synthesis of α-Aminophosphonates Catalyzed by Hafnium(IV) Chloride. Tetrahedron Lett 2016, 57, 1782–1785. DOI: 10.1016/j.tetlet.2016.03.033.
  • Reddy, P. S.; Reddy, M. V. K.; Reddy, P. V. G. Camphor-Derived Thioureas: Synthesis and Application in Asymmetric Kabachnik-Fields Reaction. Chinese Chem. Lett. 2016, 27, 943–947. DOI: 10.1016/j.cclet.2016.01.046.
  • Reddy, M. V.; Dindulkar, S. D.; Jeong, Y. T. BF3·SiO2-Catalyzed One-Pot Synthesis of α-Aminophosphonates in Ionic Liquid and Neat Conditions. Tetrahedron Lett. 2011, 52, 4764–4767. DOI: 10.1016/j.tetlet.2011.07.027.
  • Jaiyeola, A. O.; Anand, K.; Kasumbwe, K.; Ramesh, M.; Gengan, R. M. Catalytic Synthesis of α-Amino Chromone Phosphonates and Their Antimicrobial, Toxicity and Potential HIV-1 RT Inhibitors Based on Silico Screening. J. Photochem. Photobiol. B, Biol. 2017, 166, 136–147. DOI: 10.1016/j.jphotobiol.2016.11.014.
  • Kaboudin, B.; Karami, L.; Kato, J.; Aoyama, H.; Yokomatsu, T. A Catalyst-Free, Three-Component Decarboxylative Coupling of Amino Acids with Aldehydes and H-Dialkylphosphites for the Synthesis of α-Aminophosphonates. Tetrahedron Lett. 2013, 54, 4872–4875. DOI: 10.1016/j.tetlet.2013.06.129.
  • Kobra, A.; Meghdad, K.; Akbar, H. A Catalyst-Free Synthesis of α-Aminophosphonates in Glycerol. Tetrahedron Lett. 2014, 55, 7236–7239. DOI: 10.1016/j.tetlet.2014.11.057.
  • Wang, Q.; Yang, L.; Ding, H.; Chen, X.; Wang, H.; Tang, X. Synthesis, X-Ray Crystal Structure, DNA/Protein Binding and Cytotoxicity Studies of Five α-Aminophosphonate N-Derivatives. Bioorg. Chem. 2016, 69, 132–139. DOI: 10.1016/j.bioorg.2016.10.007.
  • Fang, Z.; Yang, H.; Miao, Z.; Chen, R. Asymmetric Mannich‐Type Synthesis of N‐Phosphinyl α‐Aminophosphonic Acid Monoesters. HCA. 2011, 94, 1586–1593. DOI: 10.1002/hlca.201100025.
  • Yan-Chun, G.; Li, J.; Jiao-Li, M.; Zhi-Ran, Y.; Wang, H. W.; Wen-Juan, Z.; Xin-Cheng, L.; Yu-Fen, Z. Synthesis and Antitumor Activity of α-Aminophosphonate Derivatives Containing Thieno[2,3-d]Pyrimidines. Chin. Chem. Lett. 2015, 26, 755–758. DOI: 10.1016/j.cclet.2015.03.026.
  • Hellal, A.; Chafaa, S.; Chafai, N.; Touafri, L. Synthesis, Antibacterial Screening and DFT Studies of Series of α-Amino-Phosphonates Derivatives from Aminophenols. J. Mol. Struct. 2017, 1134, 217–225. DOI: 10.1016/j.molstruc.2016.12.079.
  • Jin, L.; Song, B.; Zhang, G.; Xu, R.; Zhang, S.; Gao, X.; Hu, D.; Yang, S. Synthesis, X-Ray Crystallographic Analysis, and Antitumor Activity of N-(Benzothiazole-2-yl)-1-(Fluorophenyl)-O,O-Dialkyl-α-Aminophosphonates. Bioorg. Med. Chem. Lett. 2006, 16, 1537–1543. DOI: 10.1016/j.bmcl.2005.12.041.
  • Heydari, A.; Khaksar, S.; Tajbakhsh, M. Trifluoroethanol as a Metal-Free, Homogeneous and Recyclable Medium for the Efficient One-Pot Synthesis of α-Amino Nitriles and α-Aminophosphonates. Tetrahedron Lett. 2009, 50, 77–80. DOI: 10.1016/j.tetlet.2008.10.106.
  • Xia, M.; Lu, Y. D. Ultrasound-Assisted One-Pot Approach to α-Amino Phosphonates under Solvent-Free and Catalyst-Free Conditions. Ultrason. Sonochem. 2007, 14, 235–240. DOI: 10.1016/j.ultsonch.2006.04.006.
  • Niralwad, K. S.; Shingate, B. B.; Shingare, M. S. Solvent-free sonochemical preparation of alpha-aminophosphonates catalyzed by 1-hexanesulphonic acid sodium salt. Ultrason. Sonochem. 2010, 17, 760–763. DOI: 10.1016/j.ultsonch.2010.02.002.
  • Shinde, P. V.; Kategaonkar, A. H.; Shingate, B. B.; Shingare, M. S. An Organocatalyzed Facile and Rapid Access to α-Hydroxy and α-Amino Phosphonates under Conventional/Ultrasound Technique. Tetrahedron Lett. 2011, 52, 2889–2892. DOI: 10.1016/j.tetlet.2011.03.138.
  • Agawane, S. M.; Nagarkar, J. M. Nano Ceria Catalyzed Synthesis of α-Aminophosphonates under Ultrasonication. Tetrahedron Lett. 2011, 52, 3499–3504. DOI: 10.1016/j.tetlet.2011.04.112.
  • Xu, W.; Zhang, S.; Yang, S.; Jin, L. H.; Bhadury, P. S.; Hu, D. Y.; Zhang, Y. Asymmetric Synthesis of Alpha-aminophosphonates Using the Inexpensive Chiral Catalyst 1,1'-binaphthol Phosphate. Molecules 2010, 15, 5782–5796. DOI: 10.3390/molecules15085782.
  • Kaur, P.; Wever, W.; Rajale, T.; Li, G. Asymmetric Hydrophosphylation of Chiral N-Phosphonyl Imines Provides an Efficient Approach to Chiral α-amino phosphonates . Chem. Biol. Drug Des. 2010, 76, 314–319. DOI: 10.1111/j.1747-0285.2010.01013.x.
  • Sasai, H.; Arai, S.; Tahara, Y.; Shibasaki, M. Catalytic Asymmetric Synthesis of Alpha Amino Phosphonates Using Lanthanoid-Potassium-BINOL Complexes. J. Org. Chem. 1995, 60, 6656–6657. DOI: 10.1021/jo00126a003.
  • Arun, S.; Rajshekhar, A. U.; Vinod, K. S. Enantioselective Hydrophosphonylation of in Situ Generated N-Acyl Ketimines Catalyzed by BINOL-Derived Phosphoric Acid. Org. Lett. 2017, 19, 476–479. DOI: 10.1021/acs.orglett.6b03623.
  • Cheng, X.; Goddard, R.; Buth, G.; List, B. Direct Catalytic Asymmetric three-component Kabachnik-Fields reaction. Angew. Chem. Int. Ed. Engl. 2008, 47, 5079–5081. DOI: 10.1002/anie.200801173.
  • Wang, L.; Cui, S. M.; Meng, W.; Zhang, G. W.; Nie, J.; Ma, J. A. Asymmetric Synthesis of α-Aminophosphonates by Means of Direct Organocatalytic Three-Component Hydrophosphonylation. Chin. Sci. Bull. 2010, 55, 1729–1731. DOI: 10.1007/s11434-009-3743-x.
  • Zhou, X.; Shang, D.; Zhang, Q.; Lin, L.; Liu, X.; Feng, X. Enantioselective Three-Component Kabachnik-Fields Reaction Catalyzed by Chiral Scandium(III)-N,N'-Dioxide Complexes. Org. Lett. 2009, 11, 1401–1404. DOI: 10.1021/ol9000813.
  • Ohara, M.; Nakamura, S.; Shibata, N. Direct Enantioselective Three‐Component Kabachnik–Fields Reaction Catalyzed by Chiral Bis(Imidazoline)‐Zinc(II) Catalysts. Adv. Synth. Catal. 2011, 353, 3285–3289. DOI: 10.1002/adsc.201100482.
  • Thorat, P. B.; Goswami, S. V.; Magar, R. L.; Patil, B. R.; Bhusare, S. R. An Efficient Organocatalysis: A One‐Pot Highly Enantioselective Synthesis of α‐Aminophosphonates. Eur. J. Org. Chem. 2013, 2013, 5509–5516. DOI: 10.1002/ejoc.201300494.
  • Bedolla-Medrano, M.; Hernandez-Fernandez, E.; Ordonez, M. Phenylphosphonic Acid as Efficient and Recyclable Catalyst in the Synthesis of α-Aminophosphonates under Solvent-Free Conditions. Synlett 2014, 25, 1145–1149. DOI: 10.1055/s-0033-1341069.
  • (a) Todorov, P. T.; Wesselinova, D. W.; Pavlov, N. D.; Martinez, J.; Calmes, M.; Naydenova, E. D. Cytotoxic Activity of New Racemic and Optically Active N-Phosphonoalkyl Bicyclic β-Amino Acids Against Human Malignant Cell Lines. Amino Acids. 2012, 43, 1445–1450. DOI: 10.1007/s00726-012-1217-y. (b) Todorov, P. T.; Pavlov, N. D.; Shivachev, B. L.; Petrova, R. N.; Martinez, J.; Naydenova, E. D.; Calmes, M. Heteroatom Chem. 2012, 23, 123–130. DOI: 10.1002/hc.
  • Ando, K.; Egami, T. Facile Synthesis of α‐Aminophosphonates in Water by Kabachnik–Fields Reaction Using Magnesium Dodecyl Sulfate. Heteroatom Chem. 2011, 22, 358–362. DOI: 10.1002/hc.20689.
  • Cui, Z.; Zhang, J.; Wang, F.; Wang, Y.; Miao, Z.; Chen, R. The Diastereoselective Synthesis of Methyl 5-deoxy-5-(dialkylphosphono)-5-(dialkylphosphorylamido)-2,3-O-isopropylidene-beta-D-ribofuranosides. Carbohydr. Res. 2008, 343, 2530–2534. DOI: 10.1016/j.carres.2008.06.009.
  • Rassukana, Y. V.; Yelenich, I. P.; Vlasenko, Y. G.; Onys’ko, P. P. Asymmetric Synthesis of Phosphonotrifluoroalanine Derivatives via Proline-Catalyzed Direct Enantioselective C-C Bond Formation Reactions of N-H Trifluoroacetimidoyl Phosphonate. Tetrahedron: Asymmetry 2014, 25, 1234–1238. DOI: 10.1016/j.tetasy.2014.07.007.
  • Zhou, C. Y.; Wang, J. C.; Wei, J.; Xu, Z. J.; Guo, Z.; Low, K. H.; Che, C. M. Dirhodium Carboxylates Catalyzed Enantioselective Coupling Reactions of α-diazophosphonates, anilines, and electron-deficient aldehydes. Angew. Chem. Int. Ed. Engl. 2012, 51, 11376–11380. DOI: 10.1002/anie.201206551.
  • Urbanovsky, P.; Kotek, J.; Cısarova, I.; Hermann, P. Selective and Clean Synthesis of Aminoalkyl-H-Phosphinic Acids from Hypophosphorous Acid by Phospha-Mannich Reaction. RSC Adv. 2020, 10, 21329–21349. DOI: 10.1039/d0ra03075a.
  • Jiménez-Andreu, M. M.; Sayago, F. J.; Cativiela, C. An Improved Synthesis of the Antibiotic Dehydrophos. Eur. J. Org. Chem. 2018, 2018, 3965–3973. DOI: 10.1002/ejoc.201800689.
  • McDonald, S. L.; Wang, Q. Copper-Catalyzed α-Amination of Phosphonates and Phosphine Oxides: A Direct Approach to α-Amino Phosphonic Acids and Derivatives. Angew. Chem. Int. Ed. Engl. 2014, 53, 1867–1871. DOI: 10.1002/anie.201308890.
  • Dufrechou, S.; Collignon, N.; Combret, J. C.; Malhiac, C. Efficient Synthesis of α-Enaminophosphonates in the Series of Piperidine and Morpholine. Examples of Synthetic Applications. Phosphorus Sulfur Silicon Relat. Elem. 1997, 127, 1–14. DOI: 10.1080/10426509708040491.
  • Zefirov, N. S.; Matveeva, E. D. Catalytic Kabachnik-Fields Reaction: New Horizons for Old Reaction. ARKIVOC 2008, 2008, 1–17. DOI: 10.3998/ark.5550190.0009.101.
  • Ordóñez, M.; Sayago, F. J.; Cativiela, C. Synthesis of Quaternary α-Aminophosphonic Acids. Tetrahedron 2012, 68, 6369–6412. DOI: 10.1016/j.tet.2012.05.008.
  • Ordóñez, M.; Rojas-Cabrera, H.; Cativiela, C. An Overview of Stereoselective Synthesis of α-Aminophosphonic Acids and Derivatives. Tetrahedron 2009, 65, 17–49. DOI: 10.1016/j.tet.2008.09.083.
  • Mikołajczyk, M.; Łyżwa, P.; Drabowicz, J. A New Efficient Procedure for Asymmetric Synthesis of Α-Aminophosphonic Acids via Addition of Lithiated Bis(Diethylamino)Phosphine Borane Complex to Enantiopure Sulfinimines. Tetrahedron: Asymmetry 2002, 13, 2571–2576. DOI: 10.1016/S0957-4166(02)00684-5.
  • Mikolajczyk, M.; Lyzwa, P. Recent Progress in Asymmetric Synthesis of Aminophosphonic Acids Mediated by Chiral Sulfinyl Auxiliary. Pure Appl. Chem. 2017, 89, 357–365. DOI: 10.1515/pac-2016-1023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.