268
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The first example of macrocyclic derivatives of cyclotetraphosphazene

, & ORCID Icon
Pages 585-593 | Received 05 Nov 2020, Accepted 05 Jan 2021, Published online: 16 Jan 2021

References

  • Allcock, H. R. Chemistry and Application of Polyphosphazenes; Wiley-Interscience: Hoboken, NJ, 2003.
  • Gleria, M.; De Jaeger, R. (Eds.). Applicative Aspects of Cyclophosphazenes; Nova Science Publishers: New York, 2004.
  • Bowers, D. J.; Wright, B. D.; Scionti, V.; Schultz, A.; Panzner, M. J.; Twum, E. B.; Li, L. L.; Katzenmeyer, B. C.; Thome, B. S.; Rinaldi, P. L.; et al. Structure and Conformation of the Medium-Sized chlorophosphazene Rings. Inorg. Chem. 2014, 53, 8874–8886. DOI: 10.1021/ic500272b.
  • Allen, C. W.; Brown, D. E.; Worley, S. D. Synthesis and Spectroscopy of N3P3X5OCH = CH2 (X = Cl, F, OCH3, OCH2CF3, N(CH3)2) and N3P3X4(OCH = CH2)2 (X = Cl, N(CH3)2). Correlations of Ultraviolet Photoelectron Spectroscopy and Nuclear Magnetic Resonance Data to Electronic and Geometrical Structure. Inorg. Chem. 2000, 39, 810–814. DOI: 10.1021/ic990406g.
  • Ainscough, E. W.; Brodie, A. M.; Davidson, R. J.; Moubaraki, B.; Murray, K. S.; Otter, C. A.; Waterland, M. R. Metal-Metal Communication in Copper(II) Complexes of Cyclotetraphosphazene Ligands. Inorg. Chem. 2008, 47, 9182–9192. DOI: 10.1021/ic8008706.
  • Keshav, K.; Singh, N.; Elias, A. J. Synthesis and Reactions of Ethynylferrocene-Derived Fluoro- and Chlorocyclotriphosphazenes. Inorg. Chem. 2010, 49, 5753–5765. DOI: 10.1021/ic100703h.
  • Uslu, A.; Mutlu Balcı, C.; Yuksel, F.; Özcan, E.; Dural, S.; Beşli, S. The Investigation of Thermosensitive Properties of Phosphazene Derivatives Bearing Amino Acid Ester Groups. J. Mol. Struct. 2017, 1136, 90–99. DOI: 10.1016/j.molstruc.2017.01.071.
  • Liu, X.; Breon, J. P.; Chen, C.; Allcock, H. R. Substituent Exchange Reactions of Trimeric and Tetrameric Aryloxycyclophosphazenes with Sodium 2,2,2-Trifluoro-Ethoxide. Dalton Trans. 2012, 41, 2100–2109. DOI: 10.1039/C1DT11606A.
  • Carriedo, G. A.; Garcıa Alonso, F. J.; Elipe, P. G.; Brillas, E.; Labarta, A.; Julia, L. Macromolecular Polyradicals with Cyclic Triphosphazene as a Core Spectral and Electrochemical Properties. J. Org. Chem. 2004, 69, 99–104. DOI: 10.1021/jo035349u.
  • Jimenez, J.; Callizo, L.; Serrano, J. L.; Barbera, J.; Oriol, L. Mixed-Substituent Cyclophosphazenes with Calamitic and Polycatenar Mesogens. Inorg. Chem. 2017, 56, 7907–7921. DOI: 10.1021/acs.inorgchem.7b00612.
  • Kumar, D.; Singh, N.; Keshav, K.; Elias, A. J. Ring-Closing Metathesis Reactions of Terminal Alkene-Derived Cyclic Phosphazenes. Inorg. Chem. 2011, 50, 250–260. DOI: 10.1021/ic101884s.
  • Mukundam, V.; Dhanunjayarao, K.; Mamidala, R.; Venkatasubbaiah, K. Synthesis, Characterization and Aggregation Induced Enhanced Emission Properties of Tetraaryl Pyrazole Decorated Cyclophosphazenes. J. Mater. Chem. 2016, 4, 3523–3530. DOI: 10.1039/C6TC00909C.
  • Liang, W. J.; Li, Y. L.; Zhao, P. H.; Zhao, G. Z. Facile Synthesis, Spectroscopic Characterization, and Crystal Structures of Dioxybiphenyl Bridged Cyclotri-Phosphazenes. Polyhedron 2017, 129, 30–37. DOI: 10.1016/j.poly.2017.03.036.
  • Zhu, X. F.; Liang, Y. H.; Zhang, D.; Wang, L.; Ye, Y.; Zhao, Y. Synthesis and Characterization of Side Group-Modified Cyclotetraphosphazene Derivatives. Phosphorus Sulfur Silicon Relat. Elem. 2011, 186, 281–286. DOI: 10.1080/10426507.2010.496120.
  • Okutan, E.; Çoşut, B.; Kayıran, S. B.; Durmuş, M.; Kılıç, A.; Yeşilot, S. Synthesis of a Dendrimeric Phenoxy-Substituted Cyclotetraphosphazene and Its Non-Covalent Interactions with Multiwalled Carbon Nanotubes. Polyhedron 2014, 67, 344–350. DOI: 10.1016/j.poly.2013.09.011.
  • Okumuş, A.; Elmas, G.; Cemaloğlu, R.; Aydın, B.; Binici, A.; Şimşek, H.; Açık, L.; Türk, M.; Güzel, R.; Kılıç, Z.; et al. Phosphorus–Nitrogen Compounds. Part 35. Syntheses, Spectroscopic and Electrochemical Properties, and Antituberculosis, Antimicrobial and Cytotoxic Activities of Mono-ferrocenyl-Spirocyclotetra-Phosphazenes. New J. Chem. 2016, 40, 5588–5603. DOI: 10.1039/C6NJ00204H.
  • Bolink, H. J.; Barea, E.; Costa, R. D.; Coronado, E.; Sudhakar, S.; Zhen, C.; Sellinger, A. Efficient Blue Emitting Organic Light Emitting Diodes Based on Fluorescent Solution Processable Cyclic Phosphazenes. Org. Elect. 2008, 9, 155–163. DOI: 10.1016/j.orgel.2007.10.005.
  • Bolink, H. J.; Santamaria, S. G.; Sudhakar, S.; Zhen, C.; Sellinger, A. Solution Processable Phosphorescent Dendrimers Based on Cyclic Phosphazenes for Use in Organic Light Emitting Diodes (OLEDs). Chem. Commun. 2008, 5, 618–620. DOI: 10.1039/B715239F.
  • Xu, J.; Toh, C. L.; Ke, K. L.; Li, J. J.; Cho, C. M.; Lu, X.; Tan, E. W.; He, C. Thermally Stable Blue-Light-Emitting Hybrid Organic-Inorganic Polymers Derived from Cyclotriphosphazene. Macromolecules 2008, 41, 9624–9636. DOI: 10.1021/ma801563s.
  • Yenilmez Çiftçi, G.; Şenkuytu, E.; Durmuş, M.; Yuksel, F.; Kiliç, A. Fluorenylidene Bridged Cyclotriphosphazenes: 'Turn-Off' Fluorescence Probe for Cu(2+) and Fe(3+) İons. Dalton Trans. 2013, 42, 14916–14926. DOI: 10.1039/C3DT51426A.
  • Siwy, M.; Sek, D.; Kaczmarczyk, B.; Jaroszewicz, I.; Nasulewicz, A.; Pelczynska, M.; Nevozhay, D.; Opolski, A. Synthesis and İn Vitro Antileukemic Activity of Some New 1,3-(Oxytetraethylenoxy)cyclotriphosphazene Derivatives. J. Med. Chem. 2006, 49, 806–810. DOI: 10.1021/jm0490078.
  • Elmas, G.; Okumuş, A.; Kılıç, Z.; Hökelek, T.; Açık, L.; Dal, H.; Ramazanoğlu, N.; Koç, L. Y. Phosphorus-Nitrogen Compounds. Part 24. Syntheses, Crystal Structures, Spectroscopic and Stereogenic Properties, Biological Activities, and DNA Interactions of Novel Spiro-Ansa-Spiro- and Ansa-Spiro-Ansa-Cyclotetraphosphazenes. Inorg. Chem. 2012, 51, 12841–12856. DOI: 10.1021/ic3017134.
  • Yıldırım, T.; Bilgin, K.; Çiftçi, G. Y.; Eçik, E. T.; Şenkuytu, E.; Uludağ, Y.; Tomak, L.; Kılıç, A. Synthesis, Cytotoxicity and Apoptosis of Cyclotriphosphazene Compounds as Anti-cancer Agents. Eur. J. Med. Chem. 2012, 52, 213–220. DOI: 10.1016/j.ejmech.2012.03.018.
  • Çiftçi, G. Y.; Eçik, E. T.; Yıldırım, T.; Bilgin, K.; Şenkuytu, E.; Yuksel, F.; Uludağ, Y.; Kılıç, A. Synthesis and Characterization of New Cyclotri-Phosphazene Compounds. Tetrahedron 2013, 69, 1454–1461. DOI: 10.1016/j.tet.2012.12.027.
  • Ai, L.; Chen, S.; Zeng, J.; Liu, P.; Liu, W.; Pan, Y.; Liu, D. Synthesis and Flame Retardant Properties of Cyclophosphazene Derivatives Containing Boron. Polym. Degrad. Stab. 2018, 155, 250–261. DOI: 10.1016/j.polymdegradstab.2018.07.026.
  • Qu, L.; Sui, Y.; Zhang, C.; Li, P.; Dai, X.; Xu, B. Compatible Cyclophosphazene-Functionalized Graphene Hybrids to Improve Flame Retardancy for Epoxy Nanocomposites. React. Funct. Polym. 2020, 155, 104697. DOI: 10.1016/j.reactfunctpolym.2020.104697.
  • Shin, Y. J.; Rok, H. Y.; Kim, S. H.; Lee, D. H.; Kim, S. B.; Park, C. S.; Yoo, Y. M.; Kim, J. G.; Kwon, S. H.; Shi, J. S. Application of Cyclophosphazene Derivatives as Flame Retardants for ABS. J. Ind. Eng. Chem. 2010, 16, 364–367. DOI: 10.1016/j.jiec.2009.08.001.
  • Dutkiewicz, M.; Przybylak, M.; Januszewski, R.; Maciejewski, H. Synthesis and Flame Retardant Efficacy of Hexakis(3-(Triethoxysilyl)Propyloxy)Cyclotriphosphazene/Silica Coatings for Cotton Fabrics. Polym. Degrad. Stab. 2018, 148, 10–18. DOI: 10.1016/j.polymdegradstab.2017.11.018.
  • Li, X.; Jiang, F.; Chen, L.; Wu, M.; Chen, Q.; Bu, Y.; Hong, M. Three Novel 3D Coordination Polymers Based on a Flexible Multisite Cyclotetraphosphazene Ligand. Dalton Trans. 2012, 41, 14038–14041. DOI: 10.1039/C2DT31852K.
  • Coşut, B.; Hacıvelioğlu, F.; Durmuş, M.; Kılıc, A.; Yeşilot, S. The Synthesis, Thermal and Photophysical Properties of Phenoxycyclotriphosphazenyl-Substituted Cyclic and Polymeric Phosphazenes. Polyhedron 2009, 28, 2510–2516. DOI: 10.1016/j.poly.2009.05.027.
  • Coşut, B.; Yeşilot, S. Synthesis, Thermal and Photophysical Properties of Naphthoxycyclotriphosphazenyl-Substituted Dendrimeric Cyclic Phosphazenes. Polyhedron 2012, 35, 101–107. DOI: 10.1016/j.poly.2012.01.013.
  • Ainscough, E. W.; A. Brodie, M.; Derwahl, A.; Kirk, S.; Otter, C. A. Conformationally Rigid Chelate Rings in Metal Complexes of Pyridyloxy-Substituted 2,2'-Dioxybiphenyl-Cyclotetra- and Cyclotriphosphazene Platforms. Inorg. Chem. 2007, 46, 9841–9852. DOI: 10.1021/ic701241v.
  • Beşli, S.; İbişoğlu, H.; Kılıc, A.; Un, İ.; Yuksel, F. Spiro, Ansa-Derivatives of Cyclotetraphosphazenes with a Tetrafluorobutane-1,4-Diol. Polyhedron 2010, 29, 3220–3228. DOI: 10.1016/j.poly.2010.08.035.
  • Alkubaisi, H. A.; Shaw, A. R. Phosphorus-Nitrogen Compounds. Part 61. The Reactions of Octachlorocyclotetraphosphazatetraene with Ethanediol, 1,3-Propanediol and 1,4-Butanediol. Synthetic and Nuclear Magnetic Resonance Spectroscopic Investigations. Phosphorus Sulfur Silicon Relat. Elem. 1989, 45, 7–14. DOI: 10.1080/10426508908046070.
  • Elias, A. J.; Twamley, B.; Shreeve, J. M. Syntheses and Experimental Studies on the Relative Stabilities of Spiro, Ansa, and Bridged Derivatives of Cyclic Tetrameric Fluorophosphazene. Inorg. Chem. 2001, 40, 2120–2126. DOI: 10.1021/ic001294s.
  • Beşli, S.; Mutlu Balcı, C.; Palabıyık, D. The Reactions of Cyclophosphazenes with Diols. In Synthesis and Reactions; Ballard, E., Ed.; Nova Science: New York, 2020. ISBN:978-1-53617-226-3.
  • Brown, D. E.; Allen, C. W. (Vinyloxy)Chlorocyclotetraphosphazenes. The Use of Two-Dimensional 31P NMR Spectroscopy in Phosphazene Chemistry. Inorg. Chem. 1987, 26, 934–937. DOI: 0020-1669/87/1326-0934S01.50/0. DOI: 10.1021/ic00253a031.
  • Dhathathreyan, K. S.; Krishnamurty, S. S.; Woods, M. Studies of Phosphazenes. Part 15. Chloro(Phenoxy)Cyclotetraphosphazenes, N4P4Cl8-n(OPh)n. Dalton Trans. 1982, 11, 2151–2157. DOI: 10.1039/DT9820002151.
  • Ibişoğlu, H.; Ciftci, G. Y.; Kılıc, A.; Tanrıverdi, E.; Un, I.; Dal, H.; Hokelek, T. Formation of Novel Spiro, Spiroansa and Dispiroansa Derivatives of Cyclotetra-Phosphazene from the Reactions of Polyfunctional Amines with Octachlorocyclotetra-Phosphazatetraene. J. Chem. Sci. 2009, 121, 125–135. DOI: 10.1007/s12039-009-.0014-y.
  • Shaw, R. A. The Reactions of Phosphazenes with Difunctional and Polyfunctional Nucleophilic Reagents. Phosphorus Sulfur Silicon Relat. Elem. 1989, 45, 103–136. DOI: 10.1080/10426508908046081.
  • Beşli, S.; Davies, B. D.; İbişoğlu, H.; Ün, İ.; Yuksel, F.; Kılıç, A. Ansa Isomer Selectivity in the Reactions of Cyclotetraphosphazene with Octafluorohexane-1,6-diol. Polyhedron 2013, 50, 364–373. DOI: 10.1016/j.poly.2012.11.035.
  • Allcock, H.; Lavin, K. D.; Riding, G. H.; Whittle, R. R.; Par, M. Reactions of Ferrocenyl- and Ruthenocenylphosphazenes with Lithiometallocenes and the X-Ray Structures of N3P3F4(η-C5H4)2Fe, [N3P3F3{(η-C5H4)2Fe}{(η-C5H4)Fe(η-C5H5)}], 1,5-N4P4F6(η-C5H4)2Fe, and 1,5,3,7-N4P4F4[(η-C5H4)2Ru]2. Organometallics 1986, 5, 1626–1635. DOI: 10.1021/om00139a019.
  • Kumara Swamy, K. C.; Kumaraswamy, S.; Kommana, P. Very Strong C-H.O, N-H.O, and O-H.O Hydrogen Bonds İnvolving a Cyclic Phosphate. J. Am. Chem. Soc. 2001, 123, 12642–12649. DOI: 10.1021/ja010713x.
  • Krishnamurthy, S. S. Bicyclic Phosphazenes Derived from (Amino) Cyclotetra-Phosphazenes. Phosphorus Sulfur Silicon Relat. Elem. 1989, 41, 375–391. DOI: 10.1080/10426508908039728.
  • Beşli, S.; Durmuş, M.; İbişoğlu, H.; Kılıç, A.; Yuksel, F. Fluorescent Aminoarylcyclo-Tetraphosphazenes. Polyhedron 2010, 29, 2609–2618. DOI: 10.1016/j.poly.2010.06.010.
  • Kommana, P.; Kumaraswamy, S.; Kumara Swamy, K. C. A Novel Paddle-Wheel Shaped Spirocyclic Cyclotetraphosphazene from the Thermolysis of a P(III) Azide. Inorg. Chem. Commun. 2003, 6, 394–397. DOI: 10.1016/S1387-7003(02)00796-7.
  • Kruszynski, R.; Bartczak, T. J.; Brandt, K.; Lach, D. Change of the Crown Ether Geometry by Complexation in Tetrapyrrolidinyl PNP-lariat Ether. Crystal Structure of the Complex of Tetrapyrrolidinyl PNP-Lariat Ether with Sodium Iodide. Inorg. Chim. Acta 2001, 321, 185–192. DOI: 10.1016/S0020-1693(01)00512-6.
  • Brandt, K.; Seliger, P.; Grzejdziak, A.; Bartczak, T. J.; Kruszynski, R.; Lach, D.; Silberring, J. Structure-Property Relationships of a Tetrapyrrolidinyl PNP-Lariat Ether and Its Complexes with Potassium, Sodium, and Silver Cations. Inorg. Chem. 2001, 40, 3704–3710. DOI: 10.1021/ic000430q.
  • Brandt, K.; Porwolik, I.; Kupka, T.; Olejnik, A.; Shaw, R. A.; Davies, D. B. New Lariat Ether-Type Macrocycles with Cyclophosphazene Subunits. J. Org. Chem. 1995, 60, 7433–7438. DOI: 0022-3263/95/1960-7433$09.00/0. DOI: 10.1021/jo00128a014.
  • Brandt, K.; Kupka, T.; Drodz, J.; Van de Grampel, J. C.; Meetsma, A.; Jekel, A. P. New Dioxytetraethyleneoxy Macrocyclic Cyclophosphazene Derivatives. Inorg. Chim. Acta 1995, 228, 187–192. DOI: 10.1016/0020-1693(94)04162-O.
  • Allen, C. W. Regio- and Stereochemical Control in Substitution Reactions of Cyclophosphazenes. Chem. Rev. 1991, 91, 119–135. DOI: 0009-2665/91/0791- 0119$09.50/0. DOI: 10.1021/cr00002a002.
  • Beşli, S.; Coles, S. J.; Davarcı, D.; Davies, D. B.; Hursthouse, M. B.; Kılıç, A. Formation of Spiro and Ansa Derivatives in the Reaction of 2,2,3,3,4,4-Hexafluoropentane-1,5-Diol with Cyclotriphosphazene: Comparison with 2,2,3,3-Tetrafluorobutane-1,4-Diol. Polyhedron 2007, 26, 5283−5292. DOI: 10.1016/j.poly.2007.07.050.
  • Brandt, K.; Siwy, M.; Porwolik-Czomperlik, I.; Silberring, J. Supramolecular Assistance to Regioselectivity in the Reactions of Chlorocyclophosphazenes with Sodium Oxyanions: Macrocyclic Effect and Anion Dependence. J. Org. Chem. 2001, 66, 5701–5712. DOI: 10.1021/jo001725o.
  • Beşli, S.; Doğan, S.; Mutlu, C.; Yuksel, F. The First Substitution Reactions of N,N-Spiro Bridged Octachlorobiscyclotriphosphazene. Polyhedron 2015, 98, 230–237. DOI: 10.1016/j.poly.2015.05.047.
  • SADABS; Bruker AXS Inc., Madison, WI, 2005.
  • APEX2 (Version 2011.4-1); Bruker AXS Inc., Madison, WI, 2008.
  • Sheldrick, G. M. A Short History of SHELX. Acta Crystallogr. A 2008, 64, 112–122. DOI: 10.1107/S0108767307043930.
  • Spek, A. L. Structure Validation in Chemical Crystallography. Acta Crystallogr. D Biol. Crystallogr. 2009, 65, 148–155. DOI: 10.1107/S090744490804362X.
  • Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. New Features for the Visualization and Investigation of Crystal Structures. J. Appl. Crystallogr. 2008, 41, 466–470. DOI: 10.1107/S0021889807067908.
  • Brandenburg, K. DIAMOND 3.1 for Windows; Crystal Impact GbR; Bonn, Germany, 2006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.