151
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of grinding media on the synergistic characteristics of coal and biomass for the carbothermal reduction of silica

, , ORCID Icon &
Pages 594-603 | Received 09 Oct 2020, Accepted 06 Jan 2021, Published online: 19 Jan 2021

References

  • Seifritz, W. The Self-Criticality Problem of Any New CO2-Free Energy System Replacing Fossil Fuels. Int. J. Hydrogen Energy 2005, 30, 45–51. DOI: 10.1016/j.ijhydene.2004.04.011.
  • Martins, F.; Felgueiras, C.; Smitkova, M.; Caetano, N. Analysis of Fossil Fuel Energy Consumption and Environmental Impacts in European Countries. Energies 2019, 12, 964.964. DOI: 10.3390/en12060.
  • Nicoletti, G.; Arcuri, N.; Nicoletti, G.; Bruno, R. A Technical and Environmental Comparison between Hydrogen and Some Fossil Fuels. Energy Conver. Manage. 2015, 89, 205–213. DOI: 10.1016/j.enconman.2014.09.057.
  • Yuan, J. H.; Na, C.; Lei, Q.; Xiong, M. P.; Guo, J. S.; Hu, Z. Coal Use for Power Generation in China. Resour. Conserv. Recycl. 2018, 129, 443–453. DOI: 10.1016/j.resconrec.2016.03.021.
  • Valentim, B. Petrography of Coal Combustion Char: A Review. Fuel 2020, 277, 118-271,. DOI: 10.1016/j.fuel.2020.118271.
  • Sahu, S. G.; Chakraborty, N.; Sarkar, P. Coal-Biomass co-Combustion: An Overview. Renew. Sustain. Energy Rev. 2014, 39, 575–586. DOI: 10.1016/j.rser.2014.07.106.
  • Nussbaumer, T. Energ Combustion and Co-Combustion of Biomass: Fundamentals, Technologies, and Primary Measures for Emission Reduction. Energy Fuels 2003, 17, 1510–1521. DOI: 10.1021/ef030031q.
  • Sami, M.; Annamalai, K.; Wooldridge, M. Co-Firing of Coal and Biomass Fuel Blends. Prog Energy Combust. Sci. 2001, 27, 171–214. [Database] DOI: 10.1016/S0360-1285(00)00020-4.
  • Weng, J. J.; Tian, Z. Y.; Liu, Y. X.; Pan, Y.; Zhu, Y. N. Investigation on the co-Combustion Mechanism of Coal and Biomass on a Fixed-Bed Reactor with Advanced Mass Spectrometry. Renew. Energy 2020, 149, 1068–1481. DOI: 10.1016/j.renene.2019.10.110.
  • Kim, J. H.; Jeong, T. Y.; Yu, J. L.; Jeon, C. H. Influence of Biomass Pretreatment on co-Combustion Characteristics with Coal and Biomass Blends. J. Mech. Sci. Technol. 2019, 33, 2493–2501. DOI: 10.1007/s12206-019-0446-3.
  • Matthew, B. T.; Reginald, E. M. Impact of Co-Firing Coal and Biomass on Mixed Char Reactivity under Gasification Conditions. Energy Fuels 2016, 30, 1708–1719. DOI: 10.1021/acs.energyfuels.5b02480.
  • Hein, K. R. G.; Bemtgen, J. M. EU Clean Coal Technology-co-Combustion of Coal and Biomass. Fuel Process Technol. 1998, 54, 159–169. [Database] DOI: 10.1016/S0378-3820(97)00067-2.
  • Yao, D.; Hu, Q.; Wang, D.; Yang, H.; Wu, C. F.; Wang, X. H.; Chen, H. P. Hydrogen Production from Biomass Gasification Using Biochar as a Catalyst/Support. Bioresour. Technol. 2016, 216, 159–164. DOI: 10.1016/j.biortech.2016.05.011.
  • Sampson, G. R.; Richmond, A. P.; Brewter, G. A.; Gasbarro, A. F. Cofiring of Wood Chips with Coal in Interior Alaska. Forest Prod. J. 1991, 41, 53–56. DOI: 10.1139/x91-105.
  • Möller, H. J.; Funke, C.; Rinio, M.; Scholz, S. Multicrystalline Silicon for Solar Cells. Thin Solid Films 2005, 487, 179–187. DOI: 10.4028/www.scientific.net/SSP.47-48.127.
  • Flamant, G.; Kurtcuoglu, V.; Murray, J.; Steinfeld, A. Purification of Metallurgical Grade Silicon by a Solar Process. Sol. Energy Mater. Sol. 2006, 90, 2099–2106. DOI: 10.1016/j.solmat.2006.02.009.
  • Chen, Z. J.; Ma, W. H.; Wei, K. X.; Li, S. Y.; Ding, W. M. Effect of Raw Materials on the Production Process of the Silicon Furnace. J. Clean Prod. 2017, 158, 359–366. DOI: 10.1016/j.jclepro.2017.05.037.
  • Sarti, D.; Einhaus, R. Silicon Feedstock for the Multi-Crystalline Photovoltaic Industry. Sol. Energy Mater. Sol. Cells 2002, 72, 27–40. DOI: 10.1016/S0927-0248(01)00147-7.
  • Iya, S. K. Production of Ultra-High-Purity Polycrystalline Silicon. J. Cryst. Growth 1986, 75, 88–90. DOI: 10.1016/0022-0248(86)90228-9.
  • Preis, P.; Buchholz, F.; Diaz-Perez, P.; Glatz-Reichenbach , J.; Peter, C.; Schmitt, S.; Theobald, J.; Peter, K.; Siland, A.-K. Towards 20% Solar Cell Efficiency Using Silicon from Metallurgical Process Route. Energy Proc. 2014, 55, 589–595. DOI: 10.1016/j.egypro.2014.08.030.
  • Blesa, M. J.; Miranda, J. L.; Moliner, R.; Izquierdo, M. T.; Palacios, M. J. Low-Temperature co-Pyrolysis of a Low-Rank Coal and Biomass to Prepare Smokeless Fuel Briquettes. J. Anal. Appl. Pyrol. 2003, 70, 665–677. DOI: 10.1016/S0165-2370(03)00047-0.
  • Zhang, L. S.; Zhang, L.; Xu, S. P.; Zhao, W.; Liu, S. Q. Co-Pyrolysis of Biomass and Coal in a Free Fall Reactor. Fuel 2007, 86, 353–359. DOI: 10.1016/j.fuel.2006.07.004.
  • Collot, A.-G.; Zhuo, Y.; Dugwell, D. R.; Kandiyoti, R. Co-Pyrolysis and co-Gasification of Coal and Biomass in Bench-Scale Fixed-Bed and Fluidised Bed Reactors. Fuel 1999, 78, 667–679. DOI: 10.1016/S0016-2361(98)00202-6.
  • Sjöström, K.; Chen, G.; Yu, Q.; Brage, C.; Rosén, C. Promoted Reactivity of Char in co-Gasification of Biomass and Coal: Synergies in the Thermochemical Process. Fuel 1999, 78, 1189–1194. DOI: 10.1016/S0016-2361(99)00032-0.
  • Pinto, F.; Franco, C.; Lopes, H.; André, R.; Gulyurtlu, I.; Cabrita, I. Effect of Used Edible Oils in Coal Fluidised Bed Gasification. Fuel 2005, 84, 2236–2247. DOI: 10.1016/j.fuel.2005.04.026.
  • Magín, L.; Hernández, J. J.; Pazo, A.; López, J. Gasification and co-Gasification of Biomass Wastes: Effect of the Biomass Origin and the Gasifier Operating Conditions. Fuel Process Technol. 2008, 89, 828–837. DOI: 10.1016/j.fuproc.2008.02.001.
  • Li, K.; Zhang, R.; Bi, J. Experimental Study on Syngas Production by co-Gasification of Coal and Biomass in a Fluidized Bed. Int. J. Hydrog. Energy 2010, 35, 2722–2726. DOI: 10.1016/j.ijhydene.2009.04.046.
  • Suelves, I.; Lázaro, M. J.; Moliner, R. Synergetic Effects in the co-Pyrolysis of Samca Coal and a Model Aliphatic Compound Studied by Analytical Pyrolysis. J. Anal. Appl. Pyrol. 2002, 65, 197–206. DOI: 10.1016/S0165-2370(01)00194-2.
  • Suelves, I.; Moliner, R.; Lázaro, M. J. Synergetic Effects in the co-Pyrolysis of Coal and Petroleum Residues: Influences of Coal Mineral Matter and Petroleum Residue Mass Ratio. J. Anal. Appl. Pyrol. 2000, 55, 29–41. DOI: 10.1016/S0165-2370(99)00072-8.
  • Liu, J. R.; Chen, Z. J.; Ma, W. H.; Wei, K. X.; Ding, W. M. Application of a Waste Carbon Material as the Carbonaceous Reductant during Silicon Production. Silicon 2018, 10, 2409–2417. DOI: 10.1007/s12633-018-9772-9.
  • Meesri, C.; Moghtaderi, B. Lack of Synergetic Effects in the Pyrolytic Characteristics of Woody Biomass/Coal Blends under Low and High Heating Rate Regimes. Biomass Bioenergy 2002, 23, 55–66. DOI: 10.1016/S0961-9534(02)00034-X.
  • Wu, Z. Q.; Li, Y. W.; Xu, D. H.; Meng, H. Y. Co-Pyrolysis of Lignocellulosic Biomass with Low-Quality Coal: Optimal Design and Synergistic Effect from Gaseous Products Distribution. Fuel 2019, 236, 43–54. DOI: 10.1016/j.fuel.2018.08.116.
  • Hu, J. H.; Yang, H. P.; Lin, G. Y.; Chen, Y. Q.; Wang, X. H.; Shao, J. G.; Chen, H. P.; Zhang, W. N. Co-Gasification of Coal and Biomass: Synergy, Characterization and Reactivity of the Residual Char. Bioresource Technol. 2017, 244, 1–7. DOI: 10.1016/j.biortech.2017.07.111.
  • Gao, C.; Vejahati, F.; Katalambula, H.; Gupta, R. Co-Gasification of Biomass with Coal and Oil Sand Coke in a Drop Tube Furnace. Energy Fuels 2010, 24, 232–240. DOI: 10.1021/ef900578t.
  • Zhou, S. C.; Chen, Z. J.; Ma, W. H.; Li, S. Y.; Li, C.; Wu, J. J.; Yang, X. Effect of K2CO3 as an Additive Agent on the Carbothermic Reduction Process of Silicon Production. Silicon 2019, 12, 1575–1584. DOI: 10.1007/s12633-019-00254-x.
  • Zhou, S. C.; Chen, Z. J.; Ma, W. H.; Li, S. Y.; Li, C.; Wei, K. X.; Wu, J. J.; Yang, X. Effect of AC as a Reductant through the Coupling Treatment of Microwave-Assisted and Alkali Carbonate on Silicon Production. J. Alloy Compd. 2020, 817. DOI: 10.1016/j.jallcom.2019.152737.
  • Weimer, A. W.; Nilsen, K. J.; Cochran, G. A.; Roach, R. P. Kinetics of Carbothermal Reduction Synthesis of Beta Silicon Carbide. AIChE J. 1993, 39, 493–503. DOI: 10.1002/aic.690390311.
  • Okoroigwe, E. Combustion Analysis and Devolatilazation Kinetics of Gmelina, Mango, Neem and Tropical Almond Woods under Oxidative Condition. Int. J. Renew. Energy Res. 2015, 5, 1024–1033. DOI: https://www.researchgate.net/publication/291827699.
  • Edreis, E. M. A.; Li, X.; Luo, G. Q.; Sharshir, S. W.; Yao, H. Kinetic Analyses and Synergistic Effects of CO2 co-Gasification of Low Sulphur Petroleum Coke and Biomass Wastes. Bioresource Technol. 2018, 267, 54–62. DOI: 10.1016/j.biortech.2018.06.089.
  • Gil, M. V.; Casal, D.; Pevida, C.; Pis, J. J.; Rubiera, F. Thermal Behaviour and Kinetics of Coal/Biomass Blends during co-Combustion. Bioresource Technol. 2010, 101, 5601–5608. [Database] DOI: 10.1016/j.biortech.2010.02.008.
  • Kastanaki, E.; Vamvuka, D.; Grammelis, P.; Kakaras, E. Thermogravimetric Studies of the Behavior of Lignite–Biomass Blends during Devolatilization. Fuel Process Technol. 2002, 77, 159–166. DOI: <SE-START > DOI:</SE-START > DOI:10.1016/S0378-3820(02)00049-8.
  • Edreis, E. M. A.; Luo, G. Q.; Li, A.; Xu, C. F.; Yao, H. Synergistic Effects and Kinetics Thermal Behaviour of Petroleum Coke/Biomass Blends during H2O co-Gasification. Energy Conver. Manage. 2014, 79, 355–366. DOI: 10.1016/j.enconman.2013.12.043.
  • Cai, J. Q.; Wang, Y. P.; Zhou, L. M.; Huang, Q. W. Thermogravimetric Analysis and Kinetics of Coal/Plastic Blends during co-Gasification in Nitrogen Atmosphere. Fuel Process Technol. 2008, 89, 21–27. DOI: 10.1016/j.fuproc.2007.06.006.
  • Cheng, G.; He, P. W.; Xiao, B.; Hu, Z. Q.; Liu, S. M.; Zhang, L. G.; Cai, L. Gasification of Biomass Micron Fuel with Oxygen-Enriched Air: Thermogravimetric Analysis and Gasification in a Cyclone Furnace. Energy 2012, 43, 329–333. DOI: 10.1016/j.energy.2012.04.022.
  • Coats, A. W.; Redfern, J. P. Kinetic Parameters from Thermogravimetric Data. Nature 1964, 201, 68–69. DOI: 10.1038/201068a0.
  • Zhou, L. M.; Wang, Y. P.; Huang, Q. W.; Cai, J. Q. Thermogravimetric Characteristics and Kinetic of Plastic and Biomass Blends co-Gasification. Fuel Process Technol. 2006, 87, 963–969. DOI: 10.1016/j.fuproc.2006.07.002.
  • Wen, C. Y. Noncatalytic Heterogeneous Solid-Fluid Reaction Models. Ind. Eng. Chem. 1968, 60, 34–54. DOI: 10.1021/ie50705a007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.