122
Views
14
CrossRef citations to date
0
Altmetric
Research Article

The bioavailability of phosphorus in composite vs. hybrid maize differ with phosphorus and boron fertilization

Pages 738-750 | Received 17 Sep 2020, Accepted 19 Apr 2021, Published online: 17 May 2021

References

  • Tilman, D.; Balzer, C.; Hill, J.; Befort, B. L. Global Food Demand and the Sustainable Intensification of Agriculture. Proc. Natl. Acad. Sci. USA 2011, 105, 20260–20264. DOI: 10.1073/pnas.1116437108.
  • Timmusk, S.; Behers, L.; Muthoni, J.; Muraya, A.; Aronsson, A.-C. Perspectives and Challenges of Microbial Application for Crop Improvement. Front Plant Sci. 2017, 8, 49–55. DOI: 10.3389/fpls.2017.00049.
  • Van der Heijden, M. G. A.; Bardgett, R. D.; Van Straalen, N. M. The Unseen Majority: Soil Microbes as Drivers of Plant Diversity and Productivity in Terrestrial Ecosystems. Ecol. Lett. 2008, 11, 296–310. DOI: 10.1111/j.1461-0248.2007. 01139.x
  • Vassilev, N.; Vassileva, M.; Lopez, A.; Martos, V.; Reyes, A.; Maksimovic, I.; Eichler-Löbermann, B.; Malusà, E. Unexploited Potential of Some Biotechnological Techniques for Biofertilizer Production and Formulation. Appl. Microbiol. Biotechnol. 2015, 99, 4983–4996. DOI: 10.1007/s00253-015-6656-4.
  • Verbon, E. H.; Liberman, L. M. Beneficial Microbes Affect Endogenous Mechanisms Controlling Root Development. Trends Plant Sci. 2016, 21, 218–229. DOI: 10.1016/j.tplants.2016.01.013.
  • Zahir, Z. A.; Munir, A.; Asghar, H. N.; Shaharoona, B.; Arshad, M. Effectiveness of Rhizobacteria Containing ACC-Deaminase for Growth Promotion of Pea (Pisum sativum) under Drought Conditions. J. Microbiol. Biotechnol. 2008, 18, 958–963. DOI: 10.1016/j.tplants.2016.01.011.
  • Ahmed, M. F.; Kennedy, I. R.; Choudhury, A. T. M. A.; Kecskés, M. L.; Deaker, R. Phosphorus Adsorption in Some Australian Soils and Influence of Bacteria on Thedesorption of Phosphorus. Commun. Soil Sci. Plant Anal. 2008, 39, 1269–1294. DOI: 10.1016/j.tplants.2016.01.012.
  • Aise, D.; Erdal, S.; Hasanand, A.; Ahment, M. Effects of Different Water, Phosphorus and Magnesium Doses on the Quality and Yield Factors of Soybean in Harran Plain Conditions. Int. J. Phys. Sci. 2011, 6, 1484–1495. DOI: 10.1104/pp.114.251751.
  • Steel, R. G. D.; Terrie, J. H. Principles and Procedures of Statistics: A Biometrical Approach, 2nd ed. McGraw-Hill: New York, 1996.
  • Akter, F.; Nurul, I.; Shamsuddoha, A. T. M.; Bhuiyan, M. S. I.; Shilpi, S. Effect of Phosphorus and Sulphur on Growth and Yield of Soybean (Glycine max L.). Int. J. Bio-resource Stress Manage. 2013, 4, 555–560. DOI: 10.1016013.
  • Alam, M. N.; Jahan, M. S.; Ali, M. K.; Ashraf, M. A.; Islam, M. K. Effect of Vermicompost and Chemical Fertilizers on Growth, Yield and Yield Components of Potato in Barind Soils of Bangladesh. J. App. Sci. Res. 2007, 3, 1879–1888. DOI: 10.11/1365-3040.2009.02091.
  • Anchal, D.; Kharwara, P. C.; Rana, S. S.; Dass, A. Response of Gram Varieties to Sowing Dates and Phosphorus Levels under on Farm Condition. Himachal J. Agric. Res. 1997, 23, 112–115. DOI: 10.1093/jxb/eru271.
  • Ankomah, A. B.; Zapata, F.; Hardarson, G.; Danso, S. K. A. Yield, Nodulation and N2 Fixation by Cowpea Cultivars at Different Phosphorus Levels. Biol. Fert Soils 1996, 22, 10–15. DOI: 10.1007/s003740050069.
  • Ansari, A. A.; Sukhraj, K. K. Effect of Vermiwash and Vermicompost on Soil Parameters and Productivity of Okra in Guyana. Afr. J. Agric. Res. 2010, 5, 1794–1798. DOI: 10.1093/jxb/eru271.
  • Arancon, N. Q.; Edwards, C. A.; Bierman, P.; Metzger, J. D.; Lucht, C. Effects of Vermin Composts Produced from Cattle Manure, Food Waste and Paper Waste on the Growth and Yield of Peppers in the Field. Pedobio 2005, 49, 297–306. DOI: 10.1093/jxb/eru273.
  • Argaw, A. Evaluation of co-Inoculation of Bradyrhizobium japonicum and Phosphate Solubilizing Pseudomonas Spp. Effect on Soybean (Glycine max L.) in Assossa Area. J. Agric. Sci. Tech. 2012, 14, 213–224. DOI: 10.1093/jxb243.
  • Assiouty, F. M.; Abo-Sedera, S. A. Effect of Bio and Chemical Fertilizers on Seed Production and Quality of Spinach. Int. J. Agric. Biol. 2005, 6, 947–952. DOI: 10.1104/pp.114.251753.
  • Ayoub, M.; Guertin, S.; Lussier, S.; Smith, D. L. Timing and Level of Nitrogen Fertilizer Effects on Spring Wheat Yield in Eastern Canada. Crop Sci. 1994, 34, 748–756. DOI: 10.1104/114.251755.
  • Azarmi, R.; Giglou, M. T.; Taleshmikail, R.-D. Influence of Vermicompost on Soil Chemical and Physical Properties in Tomato Field. Afr. J. Biotechnol. 2009, 7, 2397–2401. DOI: 10.1104/pp.114.251751.
  • Aziz, A. L. A.; Ahiabor, B. D. K.; Opoku, A.; Abaidoo, R.-C. Contributions of Rhizobium Inoculants and Phosphorus Fertilizer to Biological Nitrogen Fixation, Growth and Grain Yield of Three Soybean Varieties on a Fluvic Luvisol. Am. J. Exp. Agric. 2016, 10, 1–11. DOI: 10.1104/pp.114.251757.
  • Bardan, M. M. Effect of Nitrogenous and Phosphetic Fertilization on Some Economical Characters of Soybean Crawford Cultivar under Calcareous Soil Conditions. Egypt. J. Agric. Res. 2003, 81, 433–440. DOI: 10.1104/pp.114.251759.
  • Begum, M. A.; Islam, M. A.; Ahmed, Q. M.; Islam, M. A.; Rahman, M. M. Effect of Nitrogen and Phosphorus on the Growth and Yield Performance of Soybean. Res. Agric. Livest. Fish. 2015, 2, 35–42. DOI: 10.1104/14.251757.
  • Bekere, W.; Endalkachew, W.; Tesfu, K. Growth and Nodulation Response of Soybean (Glycine max L.) to Bradyrhizobium Inoculation and Phosphorus Levels under Controlled Condition in South Western Ethiopia. Afr. J. Agric. Res. 2012, 7, 4266–4270. DOI: 10.1104/114.251751.
  • Bellore, S. K.; Mall, L. R. Chlorophyll Content as an Ecological Index of Dry Matter Production. Indian J. Bot. Soc 1975, 54, 75–77. DOI: 10.1104.014.251751.
  • Berg, R. K.; Lynd, J. Q. Soil Fertility Effects on Growth, Yield, Nodulation and Nitrogenase Activity of Australian Winter Pea. J. Plant Nutr. 1985, 8, 131–145. DOI: 10.1104/pp.114.251751.
  • Bhattacharyya, R.; Pandey, S. C.; Chandra, S.; Kundu, S.; Saha, S.; Mina, B. L.; Srivastva, A. K.; Gupta, H. S. Fertilization Effects on Yield Sustainability and Soil Properties under Irrigated Wheat-Soybean Rotation of an Indian Himalayan Upper Valley. Nutr. Cycl. Agroecosyst. 2010, 86, 255–268. DOI: 10.1104/pp.114.251751.
  • Brady, N. C. Soil Phosphorus and Potassium. The Nature and Properties of Soils, 2002.
  • Carsky, R. J.; Singh, B. B.; Oyewole, R. Contribution of Early–Season Cowpea to Late Season Maize in the Savanna Zone of West Africa. Biol. Agric. Hortic. 2001, 18, 303–315. DOI: 10.1104/pp.114.251750.
  • Carvalho, E. R.; Rezende, P. M.; Andrade, M. J. B.; Passos, A. M. A.; Oliveira, J. A. Fertilizante Mineral the Nature and Properties of Soils. Rev. Ciênc. Agron. 2011, 42, 930–939. DOI: 10.1104/251755.
  • Chaturvedi, I. Effects of Phosphorus Levels Alone or in Combination with Phosphate-Solubilizing Bacteria and Farmyard Manure on Growth, Yield and Nutrient up-Take of Wheat (Triticum aestivum). J. Agric. Soc. Sci. 2006, 2, 96–100. DOI: 10.1104/pp.114.251751.
  • Chauhan, Y. S.; Johanson, C. Venkataratnam, Effect of Phosphorus Deficiency on Phenology and Yield Components of Short Duration Pigeonpea. Trop. Agric. 1992, 69, 235–238. DOI: 10.1104/pp.114.251787.
  • Chela, G. S.; Tiwana, M. S.; Thind, I. S.; Puri, K. P.; Kaur, K. Effect of Bacterial Cultures and Nitrogen Fertility on the Yield and Quality of Maize Fodder (Zea Mays L.). Ann. Biol. 1993, 9, 83–86. DOI: 10.1104/pp.114.251784.
  • Chen, Y. P.; Rekha, P. D.; Arun, A. B.; Shen, F. T.; Lai, W.-A.; Young, C. C. PSB from Subtropical Soil and Their Tri-Calcium Phosphate Solubilizing Abilities. Appl. Soil Ecol. 2006, 34, 33–41. DOI: 10.1104/pp.114.2517554.
  • Chen, Z.; Ma, S.; Liu, L. Studies on Phosphorus Solubilizing Activity of a Strain of Phosphobacteria Isolated from Chestnut Type Soil in China. Bioresour. Technol. 2008, 99, 6702–6707. DOI: 10.1016/j.biortech.2007.03.064.
  • Chiezey, U. F.; Odunze, A. C. Soybean Response to Application of Poultry Manure and Phosphorus Fertilizer in the Sub-Humid Savanna of Nigeria. J. Eco. Nat. Environ. 2012, 1, 25–31. DOI: 10.1104/pp.114.251765.
  • Abdel-Ghani, A. H.; Kumar, B.; Pace, J.; Jansen, C.; Gonzalez-Portilla, P. J.; Reyes-Matamoros, J.; San Martin, J. P.; Lee, M.; Lübberstedt, T. Association Analysis of Genes Involved in Maize (Zea Mays L.) Root Development with Seedling and Agronomic Traits under Contrasting Nitrogen Levels. Plant Mol. Biol. 2015, 88, 133–147. DOI: 10.1007/s11103-015-0314-1.
  • Boyer, J.; Westgate, M. Grain Yields with Limited Water. J. Exp. Bot. 2004, 55, 2385–2394. DOI: 10.1093/jxb/erh219.
  • Cai, H.; Chen, F.; Mi, G.; Zhang, F.; Maurer, H. P.; Liu, W.; Reif, J. C.; Yuan, L. Mapping QTL for Root System Architecture of Maize (Zea May L.) in the Field at Different Developmental Stages. Theor. Appl. Genet. 2012, 125, 1313–1324. DOI: 10.1007/s00122-012-1915-6.
  • Chimungu, J. G.; Brown, K. M.; Lynch, J. P. Reduced Root Cortical Cell File Number Improves Drought Tolerance in Maize. Plant Physiol. 2014, 166, 1943–1955. DOI: 10.1104/pp.114.249037.
  • Chimungu, J. G.; Brown, K. M.; Lynch, J. P. Large Root Cortical Cell Size Improves Drought Tolerance in Maize. Plant Physiol. 2014, 166, 2166–2178. DOI: 10.1104/pp.114.250449.
  • Cooper, M.; Gho, C.; Leafgren, R.; Tang, T.; Messina, C. Breeding Drought-Tolerant Maize Hybrids for the US Corn-Belt: Discovery to Product. J. Exp. Bot. 2014, 65, 6196–6204. DOI: 10.1093/jxb/eru064.
  • de Souza, T. C.; de Castro, E. M.; Magalhães, P. C.; Lino, L. D. O.; Alves, E. T.; de Albuquerque, E. P. Morphophysiology, Morphoanatomy, and Grain Yield under Field Conditions for Two Maize Hybrids with Contrasting Response to Drought Stress. Acta Physiol. Plant. 2013, 35, 3201–3211. DOI: 10.1007/s11738-013-1355-1.
  • Entringer, G. C.; Guedes, F. L.; Oliveira, A. A.; Nascimento, J. P.; Souza, J. C. Genetic Control of Leaf Curl in Maize. Genet. Mol. Res. 2014, 13, 1672–1678. DOI: 10.4238/2014.January.22.3.
  • Frey, F. P.; Urbany, C.; Hüttel, B.; Reinhardt, R.; Stich, B. Genome-Wide Expression Profiling and Phenotypic Evaluation of European Maize Inbreeds at Seedling Stage in Response to Heat Stress. BMC Genomics 2015, 16, 123. DOI: 10.1186/s12864-015-1282-1.
  • Gong, F. P.; Yang, L.; Tai, F. J.; Hu, X. L.; Wang, W. “Omics” of Maize Stress Response for Sustainable Food Production: Opportunities and Challenges. OMICS 2014, 18, 711–729. DOI: 10.1089/omi.2014.0125.
  • Hachez, C.; Veselov, D.; Ye, Q.; Reinhardt, H.; Knipfer, T.; Fricke, W.; Chaumont, F. Short-Term Control of Maize Cell and Root Water Permeability through Plasma Membrane Aquaporin Isoforms. Plant Cell Environ. 2012, 35, 185–198. DOI: 10.1111/j.1365-3040.2011.02429.
  • Horton, D. E.; Johnson, N. C.; Singh, D.; Swain, D. L.; Rajaratnam, B.; Diffenbaugh, N. S. Contribution of Changes in Atmospheric Circulation Patterns to Extreme Temperature Trends. Nature 2015, 522, 465–469. DOI: 10.1038/nature14550.
  • Hu, X.; Wu, L.; Zhao, F.; Zhang, D.; Li, N.; Zhu, G.; Li, C.; Wang, W. Phosphoproteomic Analysis of the Response of Maize Leaves to Drought, Heat and Their Combination Stress. Front Plant Sci. 2015, 6, 298. DOI: 10.3389/fpls.2015.00298.
  • Hu, X.; Yang, Y.; Gong, F.; Zhang, D.; Zhang, L.; Wu, L.; Li, C.; Wang, W. Protein sHSP26 Improves Chloroplast Performance under Heat Stress by Interacting with Specific Chloroplast Proteins in Maize (Zea Mays). J. Proteomics 2015, 115, 81–92. DOI: 10.1016/j.jprot.2014.12.009.
  • Huang, H.; Mølle, I. M.; Song, S. Q. Proteomics of Desiccation Tolerance during develoChMent and Germination of Maize Embryos. J. Proteomics 2012, 75, 1247–1262. DOI: 10.1016/j.jprot.2011.10.036.
  • Jaramillo, R. E.; Nord, E. A.; Chimungu, J. G.; Brown, K. M.; Lynch, J. P. Root Cortical Burden Influences Drought Tolerance in Maize. Ann. Bot. 2013, 112, 429–437. DOI: 10.1093/aob/mct069.
  • Jones, T. J. Maize Tissue Culture and Transformation: The First 20 Years. In Molecular Genetic Approaches to Maize Improvement; Kriz A. L., Larkins B. A., Eds.; Springer: Heidelberg, 2009; pp 7–27
  • Ku, L. X.; Wei, X. M.; Zhang, S. F.; Zhang, J.; Guo, S. L.; Chen, Y. Cloning and Characterization of a Putative TAC1 Ortholog Associated with Leaf Angle in Maize (Zea Mays L.). PLoS One 2011, 6, e20621. DOI: 1371/journal.pone.0020621.
  • Ku, L. X.; Zhang, J.; Guo, S. L.; Liu, H. Y.; Zhao, R. F.; Chen, Y. H. Integrated Multiple Population Analysis of Leaf Architecture Traits in Maize (Zea Mays L.). J. Exp. Bot. 2012, 63, 261–274. DOI: 10.1093/jxb/err277.
  • Ku, L. X.; Zhao, W. M.; Zhang, J.; Wu, L. C.; Wang, C. L.; Wang, P. A.; Zhang, W. Q.; Chen, Y. H. Quantitative Trait Loci Mapping of Leaf Angle and Leaf Orientation Value in Maize (Zea Mays L.). Theor. Appl. Genet. 2010, 121, 951–959. DOI: 10.1007/s00122-010-1364-z.
  • Landi, P.; Giuliani, S.; Salvi, S.; Ferri, M.; Tuberosa, R.; Sanguineti, M. C. Characterization of Root-Yield-1.06, a Major Constitutive QTL for Root and Agronomic Traits in Maize across Water Regimes. J. Exp. Bot. 2010, 61, 3553–3562. DOI: 10.1093/jxb/erq192.
  • Li, C.; Li, Y.; Shi, Y.; Song, Y.; Zhang, D.; Buckler, E. S.; Zhang, Z.; Wang, T.; Li, Y. Genetic Control of the Leaf Angle and Leaf Orientation Value as Revealed by Ultra-High Density Maps in Three Connected Maize Populations. PLoS ONE 2015, 10, e0121624. 10.1371/journal.pone.0121624 DOI: 10.1371/journal.pone.0121624.
  • Li, K.; Xu, C.; Zhang, K.; Yang, A.; Zhang, J. Proteomic Analysis of Roots Growth and Metabolic Changes under Phosphorus Deficit in Maize (Zea Mays L.) Plants. Proteomics 2007, 7, 1501–1512. DOI: 10.1002/ChMic.200600960
  • Lobell, D. B.; Bänziger, M.; Magorokosho, C.; Vivek, B. Nonlinear Heat Effects on African Maize as Evidenced by Historical Yield Trials. Nature Clim. Change 2011, 1, 42–45. DOI: 10.1038/nclimate1043.
  • Lobell, D. B.; Roberts, M. J.; Schlenker, W.; Braun, N.; Little, B. B.; Rejesus, R. M.; Hammer, G. L. Greater Sensitivity to Drought Accompanies Maize Yield Increase in the US Midwest. Science 2014, 344, 516–519. DOI: 10.1126/science.1251423.
  • Luo, L. J. Breeding for Water-Saving and Drought-Resistance Rice (WDR) in China. J. Exp. Bot. 2010, 61, 3509–3517. DOI: 10.1093/jxb/erq185.
  • Lynch, J. P. Steep, Cheap and Deep: An Ideotype to Optimize Water and N Acquisition by Maize Root Systems. Ann. Bot. 2013, 112, 347–357. DOI: 10.1093/aob/mcs293.
  • Mano, Y.; Omori, F.; Takamizo, T.; Kindiger, B.; Bird, R. M.; Loaisiga, C. H. Variation for Root Aerenchyma Formation in Flooded an Non-Flooded Maize and Teosinte Seedlings. Plant Soil 2006, 281, 269–279. DOI: 10.1007/s11104-005-4268.
  • Martre, P.; Quilot-Turion, B.; Luquet, D.; Ould-Sidi Memmah, M. M.; Chenu, K.; Debaeke, P. Model-Assisted Phenotyping and Ideotype Design. In Crop Physiology; Sadras V, Calderini D, Eds.; Academic Press: London, 2015, pp 349–373.
  • Meister, R.; Rajani, M. S.; Ruzicka, D.; Schachtman, D. P. Challenges of Modifying Root Traits in Crops for Agriculture. Trends Plant Sci. 2014, 19, 779–788. DOI: 10.1016/j.tplants.2014.08.005.
  • Munns, R.; James, R. A.; Sirault, X. R.; Furbank, R. T.; Jones, H. G. New Phenotyping Methods for Screening Wheat and Barley for Beneficial Responses to Water Deficit. J. Exp. Bot. 2010, 61, 3499–3507. DOI: 10.1093/jxb/erq199.
  • Nuccio, M. L.; Wu, J.; Mowers, R.; Zhou, H.-P.; Meghji, M.; Primavesi, L. F.; Paul, M. J.; Chen, X.; Gao, Y.; Haque, E.; et al. Expression of Trehalose-6-Phosphate Phosphatase in Maize Ears Improves Yield in Well-Watered and Drought Conditions. Nat. Biotechnol. 2015, 33, 862–869. DOI: 10.1038/nbt.3277.
  • Ort, D. R.; Long, S. P. Limits on Yields in the Corn Belt. Science 2014, 344, 484–485. DOI: 10.1126/science.1253884.
  • Piperno, D. R.; Ranere, A. J.; Holst, I.; Iriarte, J.; Dickau, R. Starch Grain and Phytolith Evidence for Early Ninth Millennium B.P. maize from the Central Balsas River Valley, Mexico. Proc Natl. Acad. Sci. USA 2009, 106, 5019–5024. DOI: 10.1073/pnas.0812525106.
  • Postma, J. A.; Dathe, A.; Lynch, J. P. The Optimal Lateral Root Branching Density for Maize Depends on Nitrogen and Phosphorus Availability. Plant Physiol. 2014, 166, 590–602. DOI: 10.1104/pp.113.233916.
  • Postma, J. A.; Lynch, J. P. Theoretical Evidence for the Functional Benefit of Root Cortical Aerenchyma in Soils with Low Phosphorus Availability. Ann. Bot. 2011, 107, 829–841. DOI: 10.1093/aob/mcq199.
  • Postma, J. A.; Lynch, J. P. Root Cortical Aerenchyma Enhances the Growth of Maize on Soils with Suboptimal Availability of Nitrogen, Phosphorus, and Potassium. Plant Physiol. 2011, 156, 1190–1201. DOI: 10.1104/pp.111.175489.
  • Saengwilai, P. P.; Tian, X. L.; Lynch, J. P. Low Crown Root Number Enhances Nitrogen Acquisition from Low-Nitrogen Soils in Maize. Plant Physiol. 2014, 166, 581–589. DOI: 10.1104/pp.113.232603.
  • Sakamoto, T.; Morinaka, Y.; Ohnishi, T.; Sunohara, H.; Fujioka, S.; Ueguchi-Tanaka, M. Erect Leaves Caused by Brassinosteroid Deficiency Increase Biomass Production and Grain Yield in Rice. Nat. Biotechnol. 2006, 24, 105–109. DOI: 10.1038/nbt1173.
  • Shelden, M. C.; Roessner, U. Advances in Functional Genomics for Investigating Salinity Stress Tolerance Mechanisms in Cereals. Front. Plant Sci. 2013, 4, 123. DOI: 10.3389/fpls.2013.00123.
  • Shi, J.; Lai, J. Patterns of Genomic Changes with Crop Domestication and Breeding. Curr. Opin. Plant Biol. 2015, 24, 47–53. DOI: 10.1016/j.pbi.2015.01.008.
  • Shi, J. R.; Habben, J. E.; Archibald, R. L.; Drunnond, B.; Chamberlin, M. A.; Williams, R. Over-Expression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize. Plant Physiol. 2015, 169, 266–282. DOI: 10.1104/pp.15.00780.
  • Simons, M.; Saha, R.; Guillard, L.; Clement, G.; Armengaud, P.; Canas, R.; Maranas, C. D.; Lea, P. J.; Hirel, B. Nitrogen-Use Efficiency in Maize (Zea Mays L.): From ‘Omics’ Studies to Metabolic Modelling. J. Exp. Bot. 2014, 65, 5657–5671. DOI: 10.1093/jxb/eru227.
  • Trevisan S., Manoli A., Ravazzolo L., Botton A., Pivato M., Masi A.,. Nitrate Sensing by the Maize Root Apex Transition Zone: A Merged Transcriptomic and Proteomic Survey. J. Exp. Bot. 2015, 66, 3699–3715. DOI: 10.1093/jxb/erv165.
  • Yin H., Chen C. J., Yang J., Weston D. J., Chen J. G. Functional genomics of drought tolerance in bioenergy crops. Crit. Rev. Plant Sci. 2014, 33, 205–224. DOI: 10.1080/07352689.2014.870417
  • York L. M., Galindo-Castañeda T., Schussler J. R., Lynch J. P. Evolution of US maize (Zea mays L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress. J. Exp. Bot. 66, 2347–2358. DOI: 10.1093/jxb/erv074.
  • Zhan A., Lynch J. P. (2015). Reduced frequency of lateral root branching improves N capture from low-N soils in maize. J. Exp. Bot. 66, 2055–2065. DOI: 10.1093/jxb/erv007
  • Zhan, A.; Schneider, H.; Lynch, J. P. Reduced Lateral Root Branching Density Improves Drought Tolerance in Maize. Plant Physiol. 2015, 168, 1603–1615. DOI: 10.1104/pp.15.00187.
  • Zhang, J.; Ku, L. X.; Han, Z. P.; Guo, S. L.; Liu, H. J.; Zhang, Z. Z.; Cao, L. R.; Cui, X. J.; Chen, Y. H. The ZmCLA4 Gene in the qLA4-1 QTL Controls Leaf Angle in Maize (Zea Mays L.). J. Exp. Bot. 2014, 65, 5063–5076. DOI: 10.1093/jxb/eru271.
  • Zhu, J.; Brown, K. M.; Lynch, J. P. Root Cortical Aerenchyma Improves the Drought Tolerance of Maize (Zea Mays L.). Plant Cell Environ. 2010, 33, 740–749. DOI: 10.1111/j.1365-3040.2009.02099.x.
  • Zurek, P. R.; Topp, C. N.; Benfey, P. N. Quantitative Trait Locus Mapping Reveals Regions of the Maize Genome Controlling Root System Architecture. Plant Physiol. 2015, 167, 1487–1496. DOI: 10.1104/pp.114.251751.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.