139
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Optical detection of Al(III) and Cu(II) ions in an aqueous medium by using a simple probe possessing O,O-donor moiety

, , , &
Pages 780-790 | Received 08 Jan 2021, Accepted 20 Apr 2021, Published online: 05 May 2021

References

  • Wang, L.; Bing, Q.; Li, J.; Wang, G. A New “on-off” Fluorescent and Colorimetric Chemosensor Based on 1,3,4-Oxadiazole Derivative for the Detection of Cu2+ Ions. J. Photochem. Photobiol. A 2018, 360, 86–94. DOI: 10.1016/j.jphotochem.2018.04.015.
  • Mergu, N.; Gupta, V. K. A Novel Colorimetric Detection Probe for Copper(II) Ions Based on a Schiff Base. Sens. Actuators B Chem. 2015, 210, 408–417. DOI: 10.1016/j.snb.2014.12.130.
  • Li, T.; Yang, Z.; Li, Y.; Liu, Z.; Qi, G.; Wang, B. A Novel Fluorescein Derivative as a Colorimetric Chemosensor for Detecting Copper(II) Ion. Dyes Pigm. 2011, 88, 103–108. DOI: 10.1016/j.dyepig.2010.05.008.
  • Abebe, F. A.; Sinn, E. Fluorescein-Based Fluorescent and Colorimetric Chemosensors for Copper in Aqueous Media. Tetrahedron Lett. 2011, 52, 5234–5237. DOI: 10.1016/j.tetlet.2011.07.127.
  • Sun, J.; Xu, X.; Yu, G.; Li, W.; Shi, J. Coumarin-Based Tripodal Chemosensor for Selective Detection of Cu(II) Ion and Resultant Complex as Anion Probe through a Cu(II) Displacement Approach. Tetrahedron 2018, 74, 987–991. DOI: 10.1016/j.tet.2018.01.013.
  • Wang, H. H.; Xue, L.; Fang, Z. J.; Li, G. P.; Jiang, H. A Colorimetric and Fluorescent Chemosensor for Copper Ions in Aqueous Media and Its Application in Living Cells. New J. Chem. 2010, 34, 1239–1242. DOI: 10.1039/c0nj00168f.
  • Sengupta, P.; Ganguly, A.; Bose, A. A Phenolic Acid Based Colourimetric 'Naked-Eye' Chemosensor for the Rapid Detection of Cu(II) Ions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 198, 204–211. DOI: 10.1016/j.saa.2018.03.005.
  • Li, C.; Han, X.; Mao, S.; Aderinto, S. O.; Shi, X.; Shen, K.; Wu, H. A New, Highly Potent 1,8-Naphthalimide Based Fluorescence Turn-off Chemosensor Capable of Detecting Cu(II) Ions in Real-World Water Samples. Coloration Technol. 2018, 134, 230–239. DOI: 10.1111/cote.12340.
  • Lin, Q.; Chen, P.; Liu, J.; Fu, Y. P.; Zhang, Y. M.; Wei, T. B. Colorimetric Chemosensor and Test Kit for Detection Copper(II) Cations in Aqueous Solution with Specific Selectivity and High Sensitivity. Dyes Pigm. 2013, 98, 100–105. DOI: 10.1016/j.dyepig.2013.01.024.
  • Hung, Y. H.; Bush, A. I.; Cherny, R. A. Copper in the Brain and Alzheimer's disease. J. Biol. Inorg. Chem. 2010, 15, 61–76. DOI: 10.1007/s00775-009-0600-y.
  • Samanta, S.; Goswami, S.; Ramesh, A.; Das, G. A New Chemodosimetric Probe for the Selective Detection of Trivalent Cations in Aqueous Medium and Live Cells. J. Photochem. Photobiol. A 2015, 310, 45–51. DOI: 10.1016/j.jphotochem.2015.05.013.
  • Zhang, R.; Liu, Y.; He, M.; Su, Y.; Zhao, X.; Elimelech, M.; Jiang, Z. Antifouling Membranes for Sustainable Water Purification: Strategies and Mechanisms. Chem. Soc. Rev. 2016, 45, 5888–5924. DOI: 10.1039/C5CS00579E.
  • Lin, M. C.; Gong, M.; Lu, B.; Wu, Y.; Wang, D. Y.; Guan, M.; Angell, M.; Chen, C.; Yang, J.; Hwang, B. J.; Dai, H. An Ultrafast Rechargeable Aluminium-Ion Battery. Nature 2015, 520, 324–328. DOI: 10.1038/nature14340.
  • Samorì, C.; Cespi, D.; Blair, P.; Galletti, P.; Malferrari, D.; Passarini, F.; Vassura, I.; Tagliavini, E. Application of Switchable Hydrophilicity Solvents for Recycling Multilayer Packaging Materials. Green Chem. 2017, 19, 1714–1720. DOI: 10.1039/C6GC03535C.
  • Delhaize, E.; Ryan, P. R. Aluminum Toxicity and Tolerance in Plants. Plant Physiol. 1995, 107, 315–321. DOI: 10.1104/pp.107.2.315.
  • Manjunath, R.; Kannan, P. Thiophene and Furan Appended Pyrazoline Based Fluorescent Chemosensors for Detection of Al3+ Ion. Inorg. Chem. Commun. 2019, 101, 177–183. DOI: 10.1016/j.inoche.2019.01.038.
  • Kang, L.; Xing, Z. Y.; Ma, X. Y.; Liu, Y. T.; Zhang, Y. A Highly Selective Colorimetric and Fluorescent Turn-on Chemosensor for Al(3+) Based on Naphthalimide Derivative. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 167, 59–65. DOI: 10.1016/j.saa.2016.05.030.
  • Zeng, S.; Li, S. J.; Sun, X. J.; Li, M. Q.; Ma, Y. Q.; Xing, Z. Y.; Li, J. L. A Naphthalene-Quinoline Based Chemosensor for Fluorescent "Turn-on" and Absorbance-Ratiometric Detection of Al3+ and Its Application in Cells Imaging.” Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 205, 276–286. DOI: 10.1016/j.saa.2018.07.039.
  • Leng, X.; Jia, X.; Qiao, C.; Xu, W.; Ren, C.; Long, Y.; Yang, B. Synthesis, Characterization and Al3+ Sensing Application of a New Chromo-Fluorogenic Chemosensor. J. Mol. Struc. 2019, 1193, 69–75. DOI: 10.1016/j.molstruc.2019.05.032.
  • Ma, Y. Q.; Sun, X. J.; Li, M. Q.; Zeng, S.; Xing, Z. Y.; Li, J.-L. A Quinoline-Based Schiff Base for Significant Fluorescent “Turn–on” and Absorbance‐Ratiometric Detection of Al3+. Chem. Pap. 2019, 73, 1469–1479. DOI: 10.1016/j.snb.2017.07.030.
  • Hossain, S. M.; Singh, K.; Lakma, A.; Pradhan, R. N.; Singh, A. K. A Schiff Base Ligand of Coumarin Derivative as an ICT-Based Fluorescence Chemosensor for Al3+. Sens. Actuators B Chem. 2017, 239, 1109–1117. DOI: 10.1016/j.snb.2016.08.093.
  • Manjunath, R.; Kannan, P. Highly Selective Rhodamine-Based Fluorescence Turn-on Chemosensor for Al3+ Ion. Optical Mater. 2018, 79, 38–44. DOI: 10.1016/j.optmat.2018.03.021.
  • Warrier, S. B.; Kharkar, P. S. A Coumarin Based Chemosensor for Selective Determination of Cu(II) Ions Based on Fluorescence Quenching. J. Lumin. 2018, 199, 407–415. DOI: 10.1016/j.jlumin.2018.03.073.
  • Bayindir, S.; Toprak, M. A Novel Pyrene-Based Selective Colorimetric and Ratiometric Turn-on Sensing for Copper. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2019, 213, 6–11. DOI: 10.1016/j.saa.2019.01.053.
  • Chakraborty, N.; Chakraborty, A.; Das, S. A Pyrene Based Fluorescent Turn on Chemosensor for Detection of Cu2+ Ions with Antioxidant Nature. J. Lumin. 2018, 199, 302–309. DOI: 10.1016/j.jlumin.2018.03.042.
  • Jin, L.; Wang, W.; Shen, Z.; Xu, J.; Wang, Q.; Zhao, C. A New Coumarin-Based Fluorescence “Turn-on” Sensor for Al(III) Ions and Its Bioimaging in Cell. J. Mol. Struc. 2019, 1197, 73–79. DOI: 10.1016/j.molstruc.2019.07.048.
  • Wu, W.-N.; Wu, H.; Wang, Y.; Mao, X.-J.; Liu, B.-Z.; Zhao, X.-L.; Xu, Z.-Q.; Fan, Y.-C.; Xu, Z.-H. A Simple Hydrazone as a Multianalyte (Cu2+, Al3+, Zn2+) Sensor at Different pH Values and the Resultant Al3+ Complex as a Sensor for F¯. RSC Adv. 2018, 8, 5640–5646. DOI: 10.1039/C7RA10219D.
  • Erdemir, S.; Malkondu, S. Dual-Emissive Fluorescent Probe Based on Phenolphthalein Appended Diaminomaleonitrile for Al3+ and the Colorimetric Recognition of Cu(II). Dyes Pigm. 2019, 163, 330–336. DOI: 10.1016/j.dyepig.2018.12.017.
  • Hu, Q.; Liu, Y.; Li, Z.; Wen, R.; Gao, Y.; Bei, Y.; Zhu, Q. A New Rhodamine-Based Dual Chemosensor for Al3+ and Cu2+. Tetrahedron Lett. 2014, 55, 4912–4916. DOI: 10.1016/j.tetlet.2014.07.040.
  • Jang, Y. K.; Nam, U. C.; Kwon, H. L.; Hwang, I. H.; Kim, C. A Selective Colorimetric and Fluorescent Chemosensor Based-on Naphthol for Detection of Al3+ and Cu2+. Dyes Pigm. 2013, 99, 6–13. DOI: 10.1016/j.dyepig.2013.04.002.
  • Berhanu, A. L.; Gaurav; Mohiuddin, I.; Malik, A. K.; Aulakh, J. S.; Kumar, V.; Kim, K. H. A Review of the Applications of Schiff Bases as Optical Chemical Sensors. Trends Anal. Chem. 2019, 116, 74–91. DOI: 10.1016/j.trac.2019.04.025.
  • Datta, S.; Seth, D. K.; Butcher, R. J.; Bhattacharya, S. Mixed-Ligand Thiosemicarbazone Complexes of Nickel: Synthesis, Structure and Catalytic Activity. Inorg. Chim. Acta 2011, 377, 120–128. DOI: 10.1016/j.ica.2011.08.005.
  • Kaur, N.; Kaur, B. Spectral Studies on Anthracene Based Dual Sensor for Hg2+ and Al3+ Ions with Two Distinct Output Modes of Detection. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 181, 60–64. DOI: 10.1016/j.saa.2017.03.029.
  • Li, K.; Wang, X.; Tong, A. A “Turn-on” Fluorescent Chemosensor for Zinc Ion with Facile Synthesis and Application in Live Cell Imaging.” Anal. Chim. Acta. 2013, 776, 69–73. DOI: 10.1016/j.aca.2013.03.033.
  • Adhikary, J.; Chakraborty, P.; Samanta, S.; Zangrando, E.; Ghosh, S.; Das, D. Thiocyanate Mediated Structural Diversity in Phenol Based “End-off" Compartmental Ligand Complexes of Group 12 Metal Ions: Studies on Their Photophysical Properties and Phosphatase Like Activity.” Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 178, 114–124. DOI: 10.1016/j.saa.2017.01.041.
  • Saravana Kumar, P.; Elango, K. P. A Simple Organic Probe for Ratiometric Fluorescent Detection of Zn(II), Cd(II) and Hg(II) Ions in Aqueous Solution via Varying Emission Colours to Distinguish One Another. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2020, 241, 118610. DOI: 10.1016/j.saa.2020.118610.
  • Saravana Kumar, P.; Raja Lakshmi, P.; Elango, K. P. An Easy to Make Chemoreceptor for the Selective Ratiometric Fluorescent Detection of Cyanide in Aqueous Solution and in Food Materials. New J. Chem. 2019, 43, 675–680. DOI: 10.1039/C8NJ05587D.
  • Scott, R. L. Some Comments on the Benesi‐Hildebrand Equation. Recl. Trav. Chim. Pays-Bas. 2010, 75, 787–789. DOI: 10.1002/recl.19560750711.
  • Fanna, D. J.; Lima, L. M. P.; Craze, A. R.; Trinchi, A.; Wuhrer, R.; Lindoy, L. F.; Wei, G.; Reynolds, J. K.; Li, F. Ultrasensitive Colorimetric and Ratiometric Detection of Cu2+: Acid-Base Properties, Complexation, and Binding Studies. ACS Omega. 2018, 3, 10471–10480. DOI: 10.1021/acsomega.8b01483.
  • Analytical Methods Committee. Recommendations for the Definition, Estimation and Use of the Detection Limit. Analyst 1987, 112, 199–204.
  • Maria, S.; Claudio, P. Metal Complexes as Fluorescent Probes for Sensing Biologically Relevant Gas Molecules. Coord. Chem. Rev. 2016, 318, 16–28. DOI: 10.1016/j.ccr.2016.04.006.
  • Silvia, M.; Stefano, M.; Maria, S.; Claudio, P. A Copper Porphyrin for Sensing H2S in Aqueous Solution via a Coordinative Based Approach. Eur. J. Inorg. Chem. 2015, 13, 2272–2276. DOI: 10.1002/ejic.201500070.
  • Ashenhurst, J.; Wu, G.; Wang, S. Syntheses, Structures, Solution, and Solid-State 27Al NMR Studies of Blue Luminescent Mononuclear Aluminum Complexes: Al(7-azain)2(7-azain-H)(CH3), Al(7-azain)3(7-azain-H), and Al(7-azain)(7-azain-H)(OCH(CF3)2)2 (7-azain-H = 7-azaindole). J. Am. Chem. Soc. 2000, 122, 2541–2547. DOI: 10.1021/ja992868z.
  • Bagihalli, G. B.; Avaji, P. G.; Patil, S. A.; Badami, P. S. Synthesis, Spectral Characterization, in Vitro Antibacterial, Antifungal and Cytotoxic Activities of Co(II), Ni(II) and Cu(II) Complexes with 1,2,4-Triazole Schiff Bases. Eur. J. Med. Chem. 2008, 43, 2639–2649. DOI: 10.1016/j.ejmech.2008.02.013.
  • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, J. R.; Cheeseman, G.; Scalmani, V.; Barone, B.; Mennucci, G. A.; et al. Gaussian 03, Revision D.01. Gaussian, Inc.: Wallingford CT, 2004.
  • Xu, Y.; Yang, L.; Wang, H.; Zhang, Y.; Yang, X.; Pei, M.; Zhang, G. A New “off-on-off” Sensor for Sequential Detection of Al3+ and Cu2+ with Excellent Sensitivity and Selectivity Based on Different Sensing Mechanisms. J. Photochem. Photobiol. A 2020, 391, 112372. DOI: 10.1016/j.jphotochem.2020.112372.
  • Park, G. J.; Park, D. Y.; Park, K. M.; Kim, Y.; Kim, S. J.; Chang, P. S.; Kim, C. Solvent-Dependent Chromogenic Sensing for Cu2+ and Fluorogenic Sensing for Zn2+ and Al3+: A Multifunctional Chemosensor with Dual-Mode. Tetrahedron 2014, 70, 7429–7438. DOI: 10.1016/j.tet.2014.08.026.
  • Li, H.; Sun, X.; Zheng, T.; Xu, Z.; Song, Y.; Gu, X. Coumarin-Based Multifunctional Chemosensor for Arginine/Lysine and Cu2+/Al3+ Ions and Its Cu2+ Complex as Colorimetric and Fluorescent Sensor for Biothiols. Sens. Actuators B Chem. 2019, 279, 400–409. DOI: 10.1016/j.snb.2018.10.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.