859
Views
2
CrossRef citations to date
0
Altmetric
Short Communication

Venusian phosphine: a ‘wow!’ signal in chemistry?

, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & show all
Pages 438-443 | Received 14 Oct 2021, Accepted 17 Oct 2021, Published online: 08 Nov 2021

References

  • Smrekar, S. E.; Stofan, E. R.; Mueller, N. Venus: Surface and Interior. In Encyclopedia of the Solar System; Elsevier: Amsterdam; 2014, pp 323–341.
  • Peplowski, P. N.; Lawrence, D. J.; Wilson, J. T. Chemically Distinct Regions of Venus’s Atmosphere Revealed by Measured N2 Concentrations. Nat. Astron. 2020, 4, 947–950. DOI: 10.1038/s41550-020-1079-2.
  • Fegley, B. 2.7 – Venus. In Treatise on Geochemistry, 2nd ed.; Holland, H. D., Turekian, K. K., Eds.; Elsevier: Oxford, 2014; pp 127–148. DOI: 10.1016/B978-0-08-095975-7.00122-4.
  • Oschlisniok, J.; Häusler, B.; Pätzold, M.; Tyler, G. L.; Bird, M. K.; Tellmann, S.; Remus, S.; Andert, T. Microwave Absorptivity by Sulfuric Acid in the Venus Atmosphere: First Results from the Venus Express Radio Science Experiment VeRa. Icarus 2012, 221, 940–948. DOI: 10.1016/j.icarus.2012.09.029.
  • Taylor, F. W.; Svedhem, H.; Head, J. W. Venus: The Atmosphere, Climate, Surface, Interior and Near-Space Environment of an Earth-like Planet. Space Sci. Rev. 2018, 214, 35.
  • Titov, D. V.; Ignatiev, N. I.; McGouldrick, K.; Wilquet, V.; Wilson, C. F. Clouds and Hazes of Venus. Space Sci. Rev. 2018, 214, 1–61.
  • Andreichikov, B. M. Chemical Composition and Structure of Venus Clouds from Results of X-Ray Radiometric Experiments Made with the Vega 1 and Vega 2 Automatic Interplanetary Stations. Kosm. Issled. 1987, 25, 737–743.
  • Andreichikov, B. M. Chemical Composition and Structure of the Clouds of Venus Inferred from the Results of X-Ray Fluorescent Analysis on Descent Probes VEGA 1 and 2. Kosm. Issled. 1987, 25, 721–736.
  • Bains, W.; Petkowski, J. J.; Seager, S.; Ranjan, S.; Sousa-Silva, C.; Rimmer, P. B.; Zhan, Z.; Greaves, J. S.; Richards, A. M. S. Phosphine on Venus Cannot Be Explained by Conventional Processes. Astrobiology 2021, 21, 1277–1304. DOI: 10.1089/ast.2020.2352.
  • Milojevic, T.; Treiman, A. H.; Limaye, S. Phosphorus in the Clouds of Venus: Potential for Bioavailability. Astrobiology 2021, 21, 1250–1263. DOI: 10.1089/ast.2020.2267.
  • Mogul, R.; Limaye, S. S.; Way, M. J.; Cordova, J. A. Venus’ Mass Spectra Show Signs of Disequilibria in the Middle Clouds. Geophys. Res. Lett. 2021, 48, e2020GL091327.DOI: 10.1029/2020GL091327.
  • Greaves, J. S.; Richards, A. M. S.; Bains, W.; Rimmer, P. B.; Sagawa, H.; Clements, D. L.; Seager, S.; Petkowski, J. J.; Sousa-Silva, C.; Ranjan, S.; et al. Phosphine Gas in the Cloud Decks of Venus. Nat. Astron. 2021, 5, 655–664. DOI: 10.1038/s41550-020-1174-4.
  • Villanueva, G. L.; Cordiner, M.; Irwin, P. G. J.; de Pater, I.; Butler, B.; Gurwell, M.; Milam, S. N.; Nixon, C. A.; Luszcz-Cook, S. H.; Wilson, C. F.; et al. No Evidence of Phosphine in the Atmosphere of Venus from Independent Analyses. Nat. Astron. 2021, 5, 631–635. DOI: 10.1038/s41550-021-01422-z.
  • Snellen, I. A. G.; Guzman-Ramirez, L.; Hogerheijde, M. R.; Hygate, A. P. S.; van der Tak, F. F. S. Re-Analysis of the 267 GHz ALMA Observations of Venus-No Statistically Significant Detection of Phosphine. A&A. 2020, 644, L2. DOI: 10.1051/0004-6361/202039717.
  • Thompson, M. A. The Statistical Reliability of 267-GHz JCMT Observations of Venus: No Significant Evidence for Phosphine Absorption. Mon. Not. R. Astron. Soc. Lett. 2020, 501, L18–L22. DOI: 10.1093/mnrasl/slaa187.
  • Akins, A. B.; Lincowski, A. P.; Meadows, V. S.; Steffes, P. G. Complications in the ALMA Detection of Phosphine at Venus. APJ. 2021, 907, L27. DOI: 10.3847/2041-8213/abd56a.
  • Lincowski, A. P.; Meadows, V. S.; Crisp, D.; Akins, A. B.; Schwieterman, E. W.; Arney, G. N.; Wong, M. L.; Steffes, P. G.; Parenteau, M. N.; Domagal-Goldman, S. Claimed Detection of PH3 in the Clouds of Venus is Consistent with Mesospheric SO2. APJL. 2021, 908, L44–L52. DOI: 10.3847/2041-8213/abde47.
  • Encrenaz, T.; Greathouse, T. K.; Marcq, E.; Widemann, T.; Bézard, B.; Fouchet, T.; Giles, R.; Sagawa, H.; Greaves, J.; Sousa-Silva, C. A Stringent Upper Limit of the PH3 Abundance at the Cloud Top of Venus. A&A. 2020, 643, L5. DOI: 10.1051/0004-6361/202039559.
  • Trompet, L.; Robert, S.; Mahieux, A.; Schmidt, F.; Erwin, J.; Vandaele, A. C. Phosphine in Venus’ Atmosphere: Detection Attempts and Upper Limits Above the Cloud Top Assessed from the SOIR/VEx Spectra. A&A. 2021, 645, L4. DOI: 10.1051/0004-6361/202039932.
  • Greaves, J. S.; Richards, A. M. S.; Bains, W.; Rimmer, P. B.; Clements, D. L.; Seager, S.; Petkowski, J. J.; Sousa-Silva, C.; Ranjan, S.; Fraser, H. J. Reply to: No Evidence of Phosphine in the Atmosphere of Venus from Independent Analyses. Nat. Astron. 2021, 5, 636–639. DOI: 10.1038/s41550-021-01424-x.
  • Greaves, J. S.; Richards, A. M. S.; Bains, W.; Rimmer, P. B.; Sagawa, H.; Clements, D. L.; Seager, S.; Petkowski, J. J.; Sousa-Silva, C.; Ranjan, S.; et al. Addendum: Phosphine Gas in the Cloud Deck of Venus. Nat. Astron. 2021, 5, 726–728. DOI: 10.1038/s41550-021-01423-y.
  • Greaves, J. S.; Rimmer, P. B.; Richards, A.; Petkowski, J. J.; Bains, W.; Ranjan, S.; Seager, S.; Clements, D. L.; Silva, C. S.; Fraser, H. J. Low Levels of Sulphur Dioxide Contamination of Phosphine Spectra from Venus’ Atmosphere. 2021. arXiv Prepr. arXiv2108.08393.
  • Truong, N.; Lunine, J. I. Volcanically Extruded Phosphides as an Abiotic Source of Venusian Phosphine. Proc. Natl. Acad. Sci. USA 2021, 118, e2021689118. DOI: 10.1073/pnas.2021689118.
  • Omran, A.; Oze, C.; Jackson, B.; Mehta, C.; Barge, L. M.; Bada, J.; Pasek, M. A. Phosphine Generation Pathways on Rocky Planets. Astrobiology 2021, 21, 1264–1276. DOI: 10.1089/ast.2021.0034.
  • Mogul, R.; Limaye, S. S.; Lee, Y. J.; Pasillas, M. Potential for Phototrophy in Venus’ Clouds. Astrobiology 2021, 21, 1237–1249. DOI: 10.1089/ast.2021.0032.
  • Lovering, J. F.; Parry, L. G.; Jaeger, J. C. Temperatures and Mass Losses in Iron Meteorites during Ablation in the Earth’s Atmosphere. Geochim. Cosmochim. Acta 1960, 19, 156–167. DOI: 10.1016/0016-7037(60)90002-8.
  • Atomics, G. Decomposition of Sulfuric Acid Using Solar Thermal Energy; GA-Report A-17573, 1985.
  • Sheldrick, G. M. Nuclear Magnetic Resonance Studies of Inorganic Hydrides; University of Cambridge: Cambridge, 1966.
  • Sheldrick, G. M. NMR Study of the Protonation of Phosphine, Hypophosphorous Acid and Orthophosphorous Acid. Trans. Farad. Soc. 1967, 63, 1077–1082. DOI: 10.1039/tf9676301077.
  • Weston, R. E.; Jr.; Bigeleisen, J. Kinetics of the Exchange of Hydrogen between Phosphine and Water: A Kinetic Estimate of the Acid and Base Strengths of Phosphine. J. Am. Chem. Soc. 1954, 76, 3074–3078. DOI: 10.1021/ja01640a072.
  • Liler, M. Reaction Mechanisms in Sulphuric Acid and Other Strong Acid Solutions; Academic Press: London, 1971.
  • Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements; Elsevier: Amsterdam; 2012.
  • Kasting, J. F. Stability of Ammonia in the Primitive Terrestrial Atmosphere. J. Geophys. Res. 1982, 87, 3091–3098. DOI: 10.1029/JC087iC04p03091.
  • Schrauzer, G. N.; Strampach, N.; Hui, L. N.; Palmer, M. R.; Salehi, J. Nitrogen Photoreduction on Desert Sands under Sterile Conditions. Proc. Natl. Acad. Sci. USA 1983, 80, 3873–3876. DOI: 10.1073/pnas.80.12.3873.
  • Civiš, S.; Ferus, M.; Knížek, A.; Kubelík, P.; Kavan, L.; Zukalová, M. Photocatalytic Transformation of CO2 to CH4 and CO on Acidic Surface of TiO2 Anatase. Opt. Mater. (Amst.) 2016, 56, 80–83. DOI: 10.1016/j.optmat.2015.11.015.
  • Knížek, A.; Kubelík, P.; Bouša, M.; Ferus, M.; Civiš, S. Acidic Hydrogen Enhanced Photocatalytic Reduction of CO2 on Planetary Surfaces. ACS Earth Space Chem. 2020, 4, 1001–1009. DOI: 10.1021/acsearthspacechem.0c00039.
  • Kaiserová, T. Phosphine and Nitrous Oxide as False-Positive Biosignature Gases in Planetary Spectra; 2021.
  • Sousa-Silva, C.; Seager, S.; Ranjan, S.; Petkowski, J. J.; Zhan, Z.; Hu, R.; Bains, W. Phosphine as a Biosignature Gas in Exoplanet Atmospheres. Astrobiology 2020, 20, 235–268. DOI: 10.1089/ast.2018.1954.
  • Bains, W.; Petkowski, J. J.; Sousa-Silva, C.; Seager, S. New Environmental Model for Thermodynamic Ecology of Biological Phosphine Production. Sci. Tot. Environ. 2019, 658, 521–536. DOI: 10.1016/j.scitotenv.2018.12.086.
  • Bains, W.; Petkowski, J. J.; Sousa-Silva, C.; Seager, S. Trivalent Phosphorus and Phosphines as Components of Biochemistry in Anoxic Environments. Astrobiology 2019, 19, 885–902. DOI: 10.1089/ast.2018.1958.
  • Bains, W.; Petkowski, J. J. Astrobiologists are Rational but Not Bayesian. Int. J. Astrobiol. 2021,  20, 312–318. DOI: 10.1017/S1473550421000185.
  • Seager, S.; Petkowski, J. J.; Gao, P.; Bains, W.; Bryan, N. C.; Ranjan, S.; Greaves, J. The Venusian Lower Atmosphere Haze: A Depot for Desiccated Life Particles for the Persistence of the Hypothetical Venusian Aerial Biosphere. Astrobiology 2021, 21, 1206–1223. DOI: 10.1089/ast.2020.2244.
  • Bains, W.; Rimmer, P. B.; Petkowski, J. J.; Seager, S. Production of Ammonia Makes Venusian Clouds Habitable and Explains Observed Cloud-Level Chemical Anomalies. Proc. Natl. Acad. Sci. USA 2021 (in review).
  • Benner, S. A. Aristotle and the Search for Life on Venus. Primordial Scoop 2021, e0126. DOI: 10.52400/TKLO5825.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.