222
Views
1
CrossRef citations to date
0
Altmetric
Articles

Development of novel syntheses of organophosphorus compounds: from a simple P-C bond formation to phosphacycles

ORCID Icon
Pages 487-497 | Received 29 Oct 2021, Accepted 16 Nov 2021, Published online: 25 Nov 2021

References

  • (a) Clarke, M. L.; Williams, M. J. The Synthesis and Applications of Phosphines. In Organophosphorus Reagents; Murphy, P. J., Eds.; Oxford University Press: New York, 2004; (b) Gilheany, D. G.; Mitchell, C. M. Preparation of Phosphines. In The Chemistry of Organophosphorus Compounds, Hartley, F. R., Ed.; John Wiley & Sons: Chichester, 1990; Vol. 1, p. 151. (c) Methot, J. L.; Roush, W. R. Nucleophilic Phosphine Organocatalysis. Adv. Synth. Catal 2004, 346, 1035–1050. DOI: 10.1002/adsc.200404087.
  • Of course, there are many reports about successful examples of functional phosphine ligands: ex. (a) Crabtree, R. H. Multifunctional Ligands in Transition Metal Catalysis. New J. Chem 2011, 35, 18–23. (b) Takaya, J. Catalysis Using Transition Metal Complexes Featuring Main Group Metal and Metalloid Compounds as Supporting Ligands. Chem. Sci. 2021, 12, 1964–1981.
  • (a) Hayashi, M. Organophosphine Syntheses via Activation of the Phosphorus-Silicon Bond of Silylphosphines. Chem. Rec. 2009, 9, 236–245. (b) Hayashi, M.; Matsuura, Y.; Watanabe, Y. Activation of Silylphosphines by Diethyl Azodicarboxylate: novel Silylation of Alcohols. Tetrahedron Lett. 2004, 45, 1409–1411. (c) Hayashi, M.; Matsuura, Y.; Nishimura, Y.; Yamasaki, T.; Imai, Y.; Watanabe, Y. Phosphorus-Carbon Bond Formation by Lewis Acid Catalyzed/Mediated Addition of Silylphosphines. J. Org. Chem. 2007, 72, 7798–7800. (d) Hayashi, M.; Matsuura, Y.; Watanabe, Y. Fluoride-Mediated Phosphination of Alkenes and Alkynes by Silylphosphines. Tetrahedron Lett. 2004, 45, 9167–9169. (e) Hayashi, M.; Matsuura, Y.; Watanabe, Y. Fluoride-Catalyzed Three-Component Coupling Reaction of a Silylphosphine, Activated Alkenes and Aldehydes. Tetrahedron Lett. 2005, 46, 5135–5138. (f) Hayashi, M.; Matsuura, Y.; Watanabe, Y. Regio- and Stereoselective Synthesis of Alkenylphosphines: A Rhodium-Catalyzed Hydrophosphination of Alkynes Using a Silylphosphine. J. Org. Chem. 2006, 71, 9248–9251. (g) Hayashi, M.; Matsuura, Y.; Kurihara, K.; Maeda, D.; Nishimura, Y.; Morita, E.; Okasaka, M.; Watanabe, Y. Synthesis of Highly Functionalized Alkenylphosphines by Lewis Acid-Mediated Silylphosphination of Substituted Propiolates. Chem. Lett. 2007, 36, 634–635. (h) Matsuura, Y.; Yamasaki, T.; Watanabe, Y.; Hayashi, M. Lewis-Acid-Mediated Enantioselective Silylphosphination of Aldehydes: Preparation of Optically Active α-Hydroxyalkylphosphine Derivatives. Tetrahedron: Asymmetry 2007, 18, 2129–2132. (i) Hayashi, M.; Ishitobi, H.; Matsuura, Y.; Matsuura, T.; Watanabe, Y. Asymmetric Synthesis of α-Chiral Hydroxyalkylphosphines by a Catalytic Enantioselective Reduction of Acylphosphines. Org. Lett. 2014, 16, 5830–5833. DOI: 10.1021/ol5024757.
  • Moiseev, D. V.; Patrick, B. O.; James, B. R. New Tertiary Phosphines from Cinnamaldehydes and Diphenylphosphine. Inorg. Chem. 2007, 46, 11467–11474.
  • Hayashi, M. Phosphine Sulfides: New Aspects of Organophosphorus Compounds. Chem. Lett. 2021, 50, 1–6. DOI: 10.1246/cl.200651.
  • Recent examples of catalytic P–C bond formation: (a) Liu, C.; Szostak, M.; Decarbonylative Phosphorylation of Amides by Palladium and Nickel Catalysis: The Hirao Cross-Coupling of Amide Derivatives. Angew. Chem. Int. Ed. 2017, 5, 12718; Angew. Chem. 2017, 129, 12892; (b) Li, L.; Huang, W.; Chen, L.; Dong, J.; Ma, X.; Peng, Y. Silver-Catalyzed Oxidative C(sp3)−P Bond Formation through C − C and P − H Bond Cleavage. Angew. Chem. Int. Ed. 2017, 56, 10539–10544; Angew. Chem. 2017, 129, 10675; (c) Zhang, J.-Q.; Chen, T.; Zhang, J.-S.; Han, L.-B. Silver-Free Direct Synthesis of Alkynylphosphine Oxides via spC–H/P(O)–H Dehydrogenative Coupling Catalyzed by Palladium. Org. Lett. 2017, 19, 4692–4695. (d) Zakirova, G. G.; Mladentsev, D. Y.; Borisova, N. E. Synthesis of Chelating Tertiary Phosphine Oxides via Palladium-Catalysed C–P Bond Formation. Tetrahedron Lett. 2017, 58, 3415–3417. (e) Beaud, R.; Phipps, R. J.; Gaunt, M. J. Enantioselective Cu-Catalyzed Arylation of Secondary Phosphine Oxides with Diaryliodonium Salts toward the Synthesis of P-Chiral Phosphines. J. Am. Chem. Soc. 2016, 138, 13183–13186. (f) Yu, R.; Chen, X.; Wang, Z. Palladium-Catalyzed C–P(III) Bond Formation Reaction with Acylphosphines as Phosphorus Source. Tetrahedron Lett. 2016, 57, 3404–3406. (g) Yang, J.; Chen, T.; Han, L.-B. C-P bond-forming reactions via C-O/P-H cross-coupling catalyzed by nickel. J. Am. Chem. Soc. 2015, 137, 1782–1785. (h) Wu, Y.; Liu, L.; Yan, K.; Xu, P.; Gao, Y.; Zhao, Y. Nickel-Catalyzed Decarboxylative C–P Cross-Coupling of Alkenyl Acids with P(O)H Compounds. J. Org. Chem. 2014, 79, 8118–8127. (i) Bhat, V.; Wang, S.; Stoltz, B. M.; Virgil, S. C. Asymmetric Synthesis of QUINAP via Dynamic Kinetic Resolution. J. Am. Chem. Soc. 2013, 135, 16829–16832. (j) Xue, Q.; Xie, J.; Jin, H.; Cheng, Y.; Zhu, C. Highly Efficient Visible-Light-Induced Aerobic Oxidative C–C, C–P Coupling from C–H Bonds Catalyzed by a Gold(Iii)-Complex. Org. Biomol. Chem. 2013, 11, 1606. (k) Zhao, Y.-L.; Wu, G.-J.; Li, Y.; Gao, L.-X.; Han, F.-S. [NiCl2(Dppp)]-Catalyzed Cross-Coupling of Aryl Halides with Dialkyl Phosphite, Diphenylphosphine Oxide, and Diphenylphosphine. Chem. Eur. J. 2012, 18, 9622–9627. (l) Zhao, Y.-L.; Wu, G.-J.; Han, F.-S. Ni-Catalyzed Construction of C-P Bonds from Electron-Deficient Phenols via the In Situ Aryl C-O Activation by PyBroP. Chem Commun (Camb) 2012, 48, 5868–5870. (m) Rummelt, S. M.; Ranocchiari, M.; van Bokhoven, J. A. Synthesis of Water-Soluble Phosphine Oxides by Pd/C-Catalyzed P-C coupling in water. Org. Lett. 2012, 14, 2188–2190. (n) Shen, C.; Yang, G.; Zhang, W. Nickel-Catalyzed C–P Coupling of Aryl Mesylates and Tosylates with H(O)PR1R2. Org. Biomol. Chem. 2012, 10, 3500. (o) Cieslikiewicz, M.; Bouet, A.; Jugé, S.; Toffano, M.; Bayardon, J.; West, C.; Lewinski, K.; Gillaizeau, I. P–C Cross-Coupling onto Enamides: Versatile Synthesis of α-Enamido Phosphane Derivatives. Eur. J. Org. Chem. 2012, 2012, 1101–1106.
  • (a) Baccolini, G.; Boga, C.; Mazzacurati, M. Highly Atom-Economic One-Pot Formation of Three Different C-P Bonds: General Synthesis of Acyclic Tertiary Phosphine Sulfides. J. Org. Chem. 2005, 70, 4774–4777. DOI: 10.1021/jo0502145. (b) Han, Z. S.; Goyal, N.; Herbage, M. A.; Sieber, J. D.; Qu, B.; Xu, Y.; Li, Z.; Reeves, J. T.; Desrosiers, J.-N.; Ma, S.; et al. Efficient Asymmetric Synthesis of P-Chiral Phosphine Oxides via Properly Designed and Activated Benzoxazaphosphinine-2-Oxide Agents. J. Am. Chem. Soc. 2013, 135, 2474–2477. (c) Bayardon, J.; Rousselin, Y.; Jugé, S. Designing P-Chirogenic 1,2-Diphosphinobenzenes at Both P-Centers Using P(III)-Phosphinites. Org. Lett. 2016, 18, 2930–2933.
  • (a) Ohta, H.; Xue, Q.; Hayashi, M. Pd-Catalyzed P–C Cross-Coupling of Aryl Bromides and Triflates with Hydroxymethylphosphine Sulfide Derivatives. Eur. J. Org. Chem. 2018, 2018, 735–738. (b)Ohnishi, R.; Ohta, H.; Mori, S.; Hayashi, M. Cationic Dirhodium Complexes Bridged by 2‐Phosphinopyridines Having an Exquisitely Positioned Axial Shielding Group: A Molecular Design for Enhancing the Catalytic Activity of the Dirhodium Core. Organometallics 2021, 40, 2678–2690.
  • Nishimura, Y.; Kawamura, Y.; Watanabe, Y.; Hayashi, M. Bis-3-oxo-lambda5-phosphole: Isolation, Structural Analyses, and Synthesis of Phosphorus-Ylide Containing Conjugated Heterocycle. J. Org. Chem. 2010, 75, 3875–3877. DOI: 10.1021/jo1004235.
  • Hayashi, M.; Nishimura, Y.; Watanabe, Y. Syntheses of 3-Oxo-λ5-Benzophospholes by an Intramolecular Cyclization of Phosphorus-Ylide. Chem. Lett. 2017, 46, 1732–1735. DOI: 10.1246/cl.170758.
  • (a) Dimroth, K. Delocalized Phosphorus-Carbon Double Bonds. Top. Curr. Chem 1973, 38, 1. (b) Müller, C.; Wasserberg, D.; Weemers, J. J. M.; Pidko, E. A.; Hoffmann, S.; Lutz, M.; Spek, A. L.; Meskers, S. C. J.; Janssen, R. A. J.; van Santen, R. A.; Vogt, D. Donor-Functionalized Polydentate Pyrylium Salts and Phosphinines: Synthesis, Structural Characterization, and Photophysical Properties. Chemistry 2007, 13, 4548–4559. (c) Märkl, G. 1,1-Diphenyl-1-Phosphabenzene. Angew. Chem. Int. Ed. Engl. 1963, 2, 479–479. (d) Märkl, G. Cyclic Methylenephosphoranes. Angew. Chem. Int. Ed. Engl. 1963, 2, 153–154. (e) Märkl, G. 2,4,6-Triphenylphosphabenzene. Angew. Chem. Int. Ed. Engl. 1966, 5, 846–847. (f) Märkl, G.; Lieb, F.; Merz, K. Preparation of Phosphorin Derivatives from Pyrylium Salts and Phosphine. Angew. Chem. Int. Ed. Engl. 1967, 6, 944–945. (g) Ashe, J. A. Phosphabenzene and Arsabenzene. J. Am. Chem. Soc. 1971, 93, 3293–3295. (h)Tokarz, P.; Zagórski, P. M. Phosphinine – Synthesis of a Heavy Sibling of Pyridine. Chem. Heterocycl. Comp. 2017, 53, 858–860. (i) Nyulaśzi, L. Aromaticity of Phosphorus Heterocycles. Chem. Rev. 2001, 101, 1229–1246. (j) Streubel, R. 1λ5-Phosphinines, in Science of Synthesis; Black. D. StC., Ed.; Thieme: Stuttgart 2004, 15, 1157. (k) Wang, Z.-X.; Schleyer, P. R. Are the Six-Membered λ5-Phosphorins Aromatic or Ylidic? Hca. 2001, 84, 1578–1600. (l) Dimroth, K. The λ5-Phosphorin. Acc. Chem. Res. 1982, 15, 58–64.
  • (a) Savateev, A.; Vlasenko, Y.; Shtil, N.; Kostyuk, A. Kostyuk., Reduction of λ5-Phosphinines. Eur. J. Inorg. Chem. 2016, 2016, 628–632. (b) Svyaschenko, Y. V.; Barnych, B. B.; Volochnyuk, D. M.; Shevchuk, N. V.; Kostyuk, A. N. Electrocyclization of Phosphahexatrienes: An Approach to λ5-Phosphinines. J. Org. Chem. 2011, 76, 6125–6133. (c) Svyaschenko, Y. V.; Kostyuk, A. N.; Barnych, B. B.; Volochnyuk, D. M. A Convenient Approach to λ5-Phosphinines via Interaction of Phosphorylated 3-Pyrrolidinocrotonitrile with 2-Bromoacetophenones. Tetrahedron 2007, 63, 5656–5664. (d) Kostyuk, A. N.; Svyaschenko, Y. V.; Volochnyuk, D. M. New Approach to λ5-Phosphinines. Tetrahedron 2005, 61, 9263–9272. (e) Matveeva, E. D.; Vinogradov, D. S.; Podrugina, T. A.; Nekipelova, T. D.; Mironov, A. V.; Gleiter, R.; Zefirov, N. S. Furyl-Substituted Mixed Phosphonium–Iodonium Ylides in the Synthesis of Annelated P-Containing Heterocyclic Compounds. Eur. J. Org. Chem. 2015, 2015, 7324–7333. (f) Matveeva, E. D.; Podrugina, T. A.; Taranova, M. A.; Vinogradov, D. S.; Gleiter, R.; Zefirov, N. S. Phosphonium-Iodonium Ylides with Heteroatomic Groups in the Synthesis of Annelated P-containing Heterocycles. J. Org. Chem. 2013, 78, 11691–11697. (g) Matveeva, E. D.; Podrugina, T. A.; Taranova, M. A.; Melikhova, E. Y.; Gleiter, R.; Zefirov, N. S. Annelated P-Containing Heterocycles from Aryl- and Hetaryl-Substituted Phosphonium Iodonium Ylides with a Methoxycarbonyl-Group. Tetrahedron 2013, 69, 7395–7402. (h) Matveeva, E. D.; Podrugina, T. A.; Taranova, M. A.; Ivanova, A. M.; Gleiter, R.; Zefirov, N. S. Hetaryl-Substituted Phosphonium-Iodonium Ylides in Synthesis of Heterocycles. J. Org. Chem. 2012, 77, 5770–5774. (i) Matveeva, E. D.; Podrugina, T. A.; Pavlova, A. S.; Mironov, A. V.; Borisenko, A. A.; Gleiter, R.; Zefirov, N. S. Heterocycles from Phosphonium-Iodonium Ylides. Photochemical Synthesis of Lambda(5)-Phosphinolines. J. Org. Chem. 2009, 74, 9428–9432. (j) Heim, U.; Pritzkow, H.; Fleischer, U.; Grützmacher, H.; Sanchez, M.; Reáu, R.; Bertrand, G. λ5-Phosphetes, Benzo-λ5-Phosphetes, Naphtho-λ5-Phosphetes: Four-π-, Eight-π-, and Twelve-π-Electron Systems. Chem. Eur. J. 1996, 2, 68–74. DOI: 10.1002/chem.19960020113.
  • Hashimoto, N.; Umano, R.; Ochi, Y.; Shimahara, K.; Nakamura, J.; Mori, S.; Ohta, H.; Watanabe, Y.; Hayashi, M. Synthesis and Photophysical Properties of λ5‐Phosphinines as a Tunable Fluorophore. J. Am. Chem. Soc. 2018, 140, 2046–2049.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.