634
Views
7
CrossRef citations to date
0
Altmetric
Review

Direct functionalization of white phosphorus by organolithium reagents to organophosphorus compounds

ORCID Icon, ORCID Icon & ORCID Icon
Pages 398-407 | Received 02 Nov 2021, Accepted 14 Nov 2021, Published online: 30 Nov 2021

References

  • Emsley, J. i. The 13th Element: The Sordid Tale of Murder, Fire, and Phosphorus; Wiley: New York, 2000.
  • Corbridge, D. E. C. Phosphorus 2000. In Chemistry, Biochemistry & Technology; Elsevier: Amsterdam, 2000.
  • Tang, W.; Zhang, X. New Chiral Phosphorus Ligands for Enantioselective Hydrogenation. Chem. Rev. 2003, 103, 3029–3069. DOI: 10.1021/cr020049i.
  • Hartwig, J. F. Organotransition Metal Chemistry: From Bonding to Catalysis; University Science Books: Sausalito, 2010.
  • Liao, J.; Zhang, S.; Wang, Z.; Song, X.; Zhang, D.; Kumar, R.; Jin, J.; Ren, P.; You, H.; Chen, F.-E. Transition-Metal Catalyzed Asymmetric Reactions under Continuous Flow from 2015 to Early 2020. Green Synth. Catal. 2020, 1, 121–133. DOI: 10.1016/j.gresc.2020.08.001.
  • Ye, X.; Peng, L.; Bao, X.; Tan, C.-H.; Wang, H. Recent Developments in Highly Efficient Construction of P-Stereogenic Centers. Green Synth. Catal. 2021, 2, 6–18. DOI: 10.1016/j.gresc.2020.12.002.
  • Engel, R. In Synthesis of Carbon-Phosphorus Bonds, 2nd ed.; CRC: Boca Raton, 2004.
  • Montchamp, J.-L. Phosphinate Chemistry in the 21st Century: A Viable Alternative to the Use of Phosphorus Trichloride in Organophosphorus Synthesis. Acc. Chem. Res. 2014, 47, 77–87. DOI: 10.1021/ar400071v.
  • Fluck, E.; Pavlidou, C. M. E.; Janoschek, R. The P4 Molecule and P4H+ Ion. Phosphorus Sulfur Silicon Relat. Elem. 1979, 6, 469–474. DOI: 10.1080/03086647908069907.
  • Tsirelson, V. G.; Tarasova, N. P.; Bobrov, M. F.; Smetannikov, Y. V. Quantitative Analysis of Bonding in P4 Clusters Heteroat. Chem 2006, 17, 572–578. DOI: 10.1002/hc.20279.
  • Cossairt, B. M.; Cummins, C. C.; Head, A. R.; Lichtenberger, D. L.; Berger, R. J. F.; Hayes, S. A.; Mitzel, N. W.; Wu, G. On the Molecular and Electronic Structures of AsP3 and P4. J. Am. Chem. Soc. 2010, 132, 8459–8465. DOI: 10.1021/ja102580d.
  • Cossairt, B. M.; Piro, N. A.; Cummins, C. C. Early-Transition-Metal-Mediated Activation and Transformation of White Phosphorus. Chem. Rev. 2010, 110, 4164–4177. DOI: 10.1021/cr9003709.
  • Caporali, M.; Gonsalvi, L.; Rossin, A.; Peruzzini, M. P4 Activation by Late-Transition Metal Complexes. Chem. Rev. 2010, 110, 4178–4235. DOI: 10.1021/cr900349u.
  • Scheer, M.; Balázs, G.; Seitz, A. P4 Activation by Main Group Elements and Compounds. Chem. Rev. 2010, 110, 4236–4256. DOI: 10.1021/cr100010e.
  • Giffin, N. A.; Masuda, J. D. Reactivity of White Phosphorus with Compounds of the p-Block. Coord. Chem. Rev. 2011, 255, 1342–1359. DOI: 10.1016/j.ccr.2010.12.016.
  • Khan, S.; Sen, S. S.; Roesky, H. W. Activation of Phosphorus by Group 14 Elements in Low Oxidation States. Chem. Commun. (Camb.)) 2012, 48, 2169–2178. DOI: 10.1039/C2CC17449A.
  • Holthausen, M. H.; Weigand, J. J. The Chemistry of Cationic Polyphosphorus cages-syntheses, structure and reactivity. Chem. Soc. Rev. 2014, 43, 6639–6657. DOI: 10.1039/C4CS00019F.
  • Hoidn, C. M.; Scott, D. J.; Wolf, R. Transition-Metal-Mediated Functionalization of White Phosphorus. Chemistry 2021, 27, 1886–1902. DOI: 10.1002/chem.202001854.
  • Giusti, L.; Landaeta, V. R.; Vanni, M.; Kelly, J. A.; Wolf, R.; Caporali, M. Coordination Chemistry of Elemental Phosphorus. Coord. Chem. Rev. 2021, 441, 213927. DOI: 10.1016/j.ccr.2021.213927.
  • Heinl, S.; Reisinger, S.; Schwarzmaier, C.; Bodensteiner, M.; Scheer, M. Selective Functionalization of P4 by metal-mediated C-P bond formation. Angew. Chem. Int. Ed. Engl. 2014, 53, 7639–7642. DOI: 10.1002/anie.201403295.
  • Heinl, S.; Scheer, M. Activation of Group 15 Based Cage Compounds by [CpBIGFe(CO)2] Radicals. Chem. Sci. 2014, 5, 3221–3225. DOI: 10.1039/C4SC01213E.
  • Borger, J. E.; Ehlers, A. W.; Slootweg, J. C.; Lammertsma, K. Functionalization of P4 through Direct P-C Bond Formation. Chemistry 2017, 23, 11738–11746. DOI: 10.1002/chem.201702067.
  • Lennert, U.; Arockiam, P. B.; Streitferdt, V.; Scott, D. J.; Rödl, C.; Gschwind, R. M.; Wolf, R. Direct Catalytic Transformation of White Phosphorus into Arylphosphines and Phosphonium Salts. Nat. Catal. 2019, 2, 1101–1106. DOI: 10.1038/s41929-019-0378-4.
  • Scott, D. J.; Cammarata, J.; Schimpf, M.; Wolf, R. Synthesis of Monophosphines Directly from White Phosphorus. Nat. Chem. 2021, 13, 458–464. DOI: 10.1038/s41557-021-00657-7.
  • Xu, L.; Chi, Y.; Du, S.; Zhang, W.-X.; Xi, Z. Direct Synthesis of Phospholyl Lithium from White Phosphorus. Angew. Chem. Int. Ed. Engl. 2016, 55, 9187–9190. DOI: 10.1002/anie.201602790.
  • Du, S.; Yin, J.; Chi, Y.; Xu, L.; Zhang, W.-X. Dual Functionalization of White Phosphorus: Formation, Characterization, and Reactivity of Rare-Earth-Metal Cyclo-P3 Complexes. Angew. Chem. Int. Ed. Engl. 2017, 56, 15886–15890. DOI: 10.1002/anie.201708897.
  • Du, S.; Yang, J.; Hu, J.; Chai, Z.; Luo, G.; Luo, Y.; Zhang, W.-X.; Xi, Z. Direct Functionalization of White Phosphorus to Cyclotetraphosphanes: Selective Formation of Four P-C Bonds. J. Am. Chem. Soc. 2019, 141, 6843–6847. DOI: 10.1021/jacs.9b02628.
  • Du, S.; Zhang, W.-X.; Xi, Z. Diversified Aggregation States of Phospholyl Lithiums. Organometallics 2018, 37, 2018–2022. DOI: 10.1021/acs.organomet.8b00064.
  • Du, S.; Chai, Z.; Hu, J.; Zhang, W.-X.; Xi, Z. Isolation and Characterization of a Trinuclear Rare-Earth Metal Complex Containing a Bicyclo[3.1.0]-P64- Ligand. Chin. J. Org. Chem. 2019, 39, 2338–2342. DOI: 10.6023/cjoc201902016.
  • Du, S.; Hu, J.; Chai, Z.; Zhang, W.-X.; Xi, Z. Isolation and Characterization of Four Phosphorus Cluster Anions P73–, P144–, P162– and P264– from the Nucleophilic Functionalization of White Phosphorus with 1,4-Dilithio-1,3-Butadienes. Chin. J. Chem. 2019, 37, 71–75. DOI: 10.1002/cjoc.201800482.
  • Luo, G.; Du, S.; Wang, P.; Liu, F.; Zhang, W.-X.; Luo, Y. Fragmentation Mechanism of White Phosphorus: A Theoretical Insight into Multiple Cleavage/Formation of P-P and P-C Bonds. Chemistry 2020, 26, 13282–13287. DOI: 10.1002/chem.202002338.
  • Lu, G.; Chen, J.; Huangfu, X.; Li, X.; Fang, M.; Tang, G.; Zhao, Y. Visible-Light-Mediated Direct Synthesis of Phosphorotrithioates as Potent anti-Inflammatory Agents from White Phosphorus. Org. Chem. Front. 2019, 6, 190–194. DOI: 10.1039/C8QO01087K.
  • Huangfu, X.; Wang, Y.; Lu, G.; Cao, Y.; Tang, G.; Zhao, Y. Direct Synthesis of Phosphorotrithioites and Phosphorotrithioates from White Phosphorus and Thiols. Green Chem. 2020, 22, 5303–5309. DOI: 10.1039/C9GC04452C.
  • Huangfu, X.; Zhang, Y.; Chen, P.; Lu, G.; Cao, Y.; Tang, G.; Zhao, Y. Synthesis of Mixed Phosphorotrithioates from White Phosphorus. Green Chem. 2020, 22, 8353–8359. DOI: 10.1039/D0GC02985H.
  • Zhang, Y.; Cai, Z.; Chi, Y.; Zeng, X.; Chen, S.; Liu, Y.; Tang, G.; Zhao, Y. Diphenyl Diselenide-Catalyzed Synthesis of Triaryl Phosphites and Triaryl Phosphates from White Phosphorus. Org. Lett. 2021, 23, 5158–5163. DOI: 10.1021/acs.orglett.1c01695.
  • Zhang, F.; Zhang, J.; Chen, Z.; Weng, L.; Zhou, X. An Yttrium Organic cyclo-P4 Complex and Its Selective Conversions. Inorg. Chem. 2019, 58, 8451–8459. DOI: 10.1021/acs.inorgchem.9b00589.
  • Rauhut, M. M.; Semsel, A. M. Reactions of Elemental Phosphorus with Organometallic Compounds. J. Org. Chem. 1963, 28, 471–473. DOI: 10.1021/jo01037a048.
  • Rauhut, M. M.; Semsel, A. M. Reactions of Elemental Phosphorus with Organometallic Compounds and Alkyl Halides. The Direct Synthesis of Tertiary Phosphines and Cyclotetraphosphines. J. Org. Chem. 1963, 28, 473–477. DOI: 10.1021/jo01037a049.
  • Fritz, G.; Härer, J.; Stoll, K. Untersuchungen Zur Metallierung Der Cyclophosphane P4(Cme3)3(Sime3), P4(Cme3)2(Sime3)2, P4(Sime3)4. Z. Anorg. Allg. Chem. 1983, 504, 47–54. DOI: 10.1002/zaac.19835040906.
  • Fritz, G.; Härer, J. Über Umsetzungen Von Weißem Phosphor Mit Metallorganylen. Z Anorg. Allg. Chem. 1983, 504, 23–37. DOI: 10.1002/zaac.19835040904.
  • Riedel, R.; Hausen, H.-D.; Fluck, E. Bis(2,4,6-Tri-Tert-Butylphenyl)Bicyclotetraphosphane. Angew. Chem. Int. Ed. Engl. 1985, 24, 1056–1057. DOI: 10.1002/anie.198510561.
  • Trofimov, B. A.; Brandsma, L.; Arbuzova, S. N.; Gusarova, N. K. A New Method for the Synthesis of α,β-Acetylenic Phosphines. Russ. Chem. Bull. 1997, 46, 849–850. DOI: 10.1007/BF02495235.
  • Hübner, A.; Bernert, T.; Sänger, I.; Alig, E.; Bolte, M.; Fink, L.; Wagner, M.; Lerner, H.-W. Solvent-Free Mesityllithium: Solid-State Structure and Its Reactivity towards White Phosphorus. Dalton Trans. 2010, 39, 7528–7533. DOI: 10.1039/C0DT00161A.
  • Borger, J. E.; Ehlers, A. W.; Lutz, M.; Slootweg, J. C.; Lammertsma, K. Functionalization of P4 Using a Lewis Acid Stabilized Bicyclo[1.1.0]Tetraphosphabutane Anion. Angew. Chem. Int. Ed. Engl. 2014, 53, 12836–12839. DOI: 10.1002/anie.201405879.
  • Borger, J. E.; Ehlers, A. W.; Lutz, M.; Slootweg, J. C.; Lammertsma, K. Stabilization and Transfer of the Transient [Mes*P4](-) Butterfly Anion Using BPh3. Angew. Chem. Int. Ed. Engl. 2016, 55, 613–617. DOI: 10.1002/anie.201508916.
  • Borger, J. E.; Ehlers, A. W.; Lutz, M.; Slootweg, J. C.; Lammertsma, K. Selective [3 + 1] Fragmentations of P4 by “P” Transfer from a Lewis Acid Stabilized [RP4 ]- Butterfly Anion. Angew. Chem. Int. Ed. Engl. 2017, 56, 285–290. DOI: 10.1002/anie.201607234.
  • Borger, J. E.; Bakker, M. S.; Ehlers, A. W.; Lutz, M.; Slootweg, J. C.; Lammertsma, K. Functionalization of P4 in the Coordination Sphere of Coinage Metal Cations. Chem. Commun. (Camb).) 2016, 52, 3284–3287. DOI: 10.1039/C5CC10037B.
  • Xi, Z. 1,4-Dilithio-1,3-Dienes: Reaction and Synthetic Applications. Acc. Chem. Res. 2010, 43, 1342–1351. DOI: 10.1021/ar1000583.
  • Zhang, W.-X.; Zhang, S.; Xi, Z. Zirconocene and Si-Tethered Diynes: A Happy Match Directed toward Organometallic Chemistry and Organic Synthesis. Acc. Chem. Res. 2011, 44, 541–551. DOI: 10.1021/ar200078e.
  • Zhang, W.-X.; Xi, Z. Organometallic Intermediate-Based Organic Synthesis: Organo-di-Lithio Reagents and Beyond. Org. Chem. Front 2014, 1, 1132–1139. DOI: 10.1039/C4QO00231H.
  • Zhang, S.; Zhang, W.-X.; Xi, Z. Semibullvalene and Diazasemibullvalene: Recent Advances in the Synthesis, Reaction Chemistry, and Synthetic Applications. Acc. Chem. Res. 2015, 48, 1823–1831. DOI: 10.1021/acs.accounts.5b00190.
  • Zhang, Y.; Yu, C.; Huang, Z.; Zhang, W.-X.; Ye, S.; Wei, J.; Xi, Z. Metalla-Aromatics: Planar, Nonplanar, and Spiro. Acc. Chem. Res. 2021, 54, 2323–2333. DOI: 10.1021/acs.accounts.1c00146.
  • Xu, L.; Wang, Y.-C.; Wei, J.; Wang, Y.; Wang, Z.; Zhang, W.-X.; Xi, Z. The First Lutetacyclopentadienes: Synthesis, Structure, and Diversified insertion/C-H activation reactivity. Chemistry 2015, 21, 6686–6689. DOI: 10.1002/chem.201500387.
  • Xu, L.; Wei, J.; Zhang, W.-X.; Xi, Z. Insertion/Rearrangement Reactivity of a Lutetacyclopentadiene towards N,N'-Diphenylcarbodiimide: Cooperative Effect of the Metal Center, Concentration of LiCl, and Solvent . Chemistry 2015, 21, 15860–15866. DOI: 10.1002/chem.201502135.
  • Xu, L.; Wang, Y.; Wang, Y.-C.; Wang, Z.; Zhang, W.-X.; Xi, Z. Sandwich Lutetacyclopentadiene with the Coordination of Lithium to the Diene Unit: Synthesis, Structure, and Transformation. Organometallics 2016, 35, 5–8. DOI: 10.1021/acs.organomet.5b00957.
  • Mathey, F. The Organic Chemistry of Phospholes. Chem. Rev. 1988, 88, 429–453. DOI: 10.1021/cr00084a005.
  • Mathey, F. The Chemistry of Phospha– and Polyphosphacyclopentadienide Anions. Coord. Chem. Rev. 1994, 137, 1–52. DOI: 10.1016/0010-8545(94)03000-G.
  • Xu, Y.; Wang, Z.; Gan, Z.; Xi, Q.; Duan, Z.; Mathey, F. Versatile Synthesis of Phospholides from Open-Chain Precursors. Application to Annelated pyrrole- and silole-phosphole rings. Org. Lett. 2015, 17, 1732–1734. DOI: 10.1021/acs.orglett.5b00598.
  • Liu, Y.; Tian, R.; Duan, Z.; Mathey, F. Nonbenzenoid Aromaticity of 1-Phosphafulvenes: Synthesis of Phosphacymantrenes. Dalton Trans. 2021, 50, 476–479. DOI: 10.1039/D0DT03934A.
  • Liu, Y.; Fan, X.; Tian, R.; Duan, Z. FeCl2 Catalyzed Three-Component Reactions of Phospholes, Pyrrolidine, and Ketones (Aldehydes): Chemoselective Synthesis of 1-Phosphafulvenes. Org. Lett. 2021, 23, 2943–2947. DOI: 10.1021/acs.orglett.1c00602.
  • Attar, S.; Catalano, V. J.; Nelson, J. H. Diastereoselectivity of Chloride Substitution Reactions of Cycloruthenated (R)C-(+)- and (S)C-(−)-Dimethyl(1-Phenylethyl)Amine. Organometallics 1996, 15, 2932–2946. DOI: 10.1021/om960064b.
  • Schenk, W. A.; Stubbe, M.; Hagel, M. Enantioselective Organic Syntheses Using Chiral Transition Metal Complexes V. (2S,3S)-Bis(Dibenzophospholyl)Butane, a Rigid (S,S)-CHIRAPHOS Analog. J. Organomet. Chem. 1998, 560, 257–263. DOI: 10.1016/S0022-328X(98)00461-6.
  • Ahn, Y. J.; Rubio, R. J.; Hollis, T. K.; Tham, F. S.; Donnadieu, B. Slip − Inversion − Slip Mechanism of Phosphametallocene Isomerization. Spectroscopic Characterization of an (η1-Phospholyl)Titanium Complex. Synthesis and Structures of Chiral Mono(Phospholyl)Titanium Complexes. Organometallics 2006, 25, 1079–1083. DOI: 10.1021/om050357h.
  • van Kalkeren, H. A.; Leenders, S. H. A. M.; Hommersom, C. R. A.; Rutjes, F. P. J. T.; van Delft, F. L. In Situ Phosphine Oxide Reduction: A Catalytic Appel Reaction. Chemistry 2011, 17, 11290–11295. DOI: 10.1002/chem.201101563.
  • van Kalkeren, H.; Bruins, J.; Rutjes, F.; van Delft, F. L. Organophosphorus-Catalysed Staudinger Reduction. Adv. Synth. Catal. 2012, 354, 1417–1421. DOI: 10.1002/adsc.201100967.
  • Chen, R.; Zhu, R.; Fan, Q.; Huang, W. Synthesis, Structure, and Optoelectronic Properties of Phosphafluorene Copolymers. Org. Lett. 2008, 10, 2913–2916. DOI: 10.1021/ol801068m.
  • Bouit, P.-A.; Escande, A.; Szűcs, R.; Szieberth, D.; Lescop, C.; Nyulászi, L.; Hissler, M.; Réau, R. Dibenzophosphapentaphenes: Exploiting P Chemistry for Gap Fine-Tuning and Coordination-Driven Assembly of Planar Polycyclic Aromatic Hydrocarbons. J. Am. Chem. Soc. 2012, 134, 6524–6527. DOI: 10.1021/ja300171y.
  • Hu, J.; Chai, Z.; Liu, W.; Huang, Z.; Wei, J.; Zhang, W.-X. Phosphafluorenyl Lithiums: Direct Synthesis from White Phosphorus, Structure and Diversified Synthons. Sci. China Chem. 2021, DOI: 10.1007/s11426-021-1139-0.
  • Fritschel, S. J.; Ackerman, J. J. H.; Keyser, T.; Stille, J. K. Transition-Metal-Catalyzed Asymmetric Organic Synthesis via Polymer-Attached Optically Active Phosphine Ligands. 4. Asymmetric Hydroformylation. J. Org. Chem. 1979, 44, 3152–3157. DOI: 10.1021/jo01332a013.
  • Vedejs, E.; Marth, C. DBP Ylides: Wittig Reagents for Synthesis of E-Alkenes from Aldehydes. Tetrahedron Lett. 1987, 28, 3445–3448. DOI: 10.1016/S0040-4039(00)96322-6.
  • François, N.; Louis, R. Synthesis of η1 and η5 Complexes of Samarium(II) with Benzophospholyl Ligands. J. Organomet. Chem. 1994, 464, 149–154. DOI: 10.1016/0022-328X(94)87268-6.
  • Nguyen, D. H.; Lauréano, H.; Jugé, S.; Kalck, P.; Daran, J.-C.; Coppel, Y.; Urrutigoity, M.; Gouygou, M. First Dibenzophospholyl(Diphenylphosphino)methane-Borane Hybrid P-(η2-BH3) Ligand: Synthesis and Rhodium(I) Complex. Organometallics 2009, 28, 6288–6292. DOI: 10.1021/om900684w.
  • Zhang, J.-Q.; Ye, J.; Huang, T.; Shinohara, H.; Fujino, H.; Han, L.-B. Conversion of Triphenylphosphine Oxide to Organophosphorus via Selective Cleavage of C–P, O–P, and C–H Bonds with Sodium. Commun. Chem. 2020, 3, 1–9. DOI: 10.1038/s42004-019-0249-6.
  • Zhang, J.-Q.; Ikawa, E.; Fujino, H.; Naganawa, Y.; Nakajima, Y.; Han, L.-B. Selective C-P(O) Bond Cleavage of Organophosphine Oxides by Sodium . J. Org. Chem. 2020, 85, 14166–14173. DOI: 10.1021/acs.joc.0c01642.
  • Luo, H.; Zhao, Y.; Wang, D.; Wang, M.; Shi, Z. Stereoselective Fluoroarylation of 1,1-Difluoroallenes Enabled by Palladium Catalysis. Green Synth. Catal. 2020, 1, 134–142. DOI: 10.1016/j.gresc.2020.08.002.
  • Li, K.; Nie, M.; Tang, W. Synthesis of α-Tertiary Allylsilanes by Palladium-Catalyzed Hydrosilylation of 1,1-Disubstituted Allenes. Green Synth. Catal. 2020, 1, 171–174. DOI: 10.1016/j.gresc.2020.08.003.
  • Ke, M.; Liu, Z.; Zhang, K.; Zuo, S.; Chen, F. Synergistic Pd/Cu Catalysis for Stereoselective Allylation of Vinylethylene Carbonates with Glycine Iminoesters: Enantioselective Access to Diverse Trisubstituted Allylic Amino Acid Derivatives. Green Synth. Catal. 2021, 2, 228–232. DOI: 10.1016/j.gresc.2021.04.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.