295
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Phosphinic acid-based enzyme inhibitors

ORCID Icon, , ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 451-456 | Received 29 Oct 2021, Accepted 22 Nov 2021, Published online: 10 Dec 2021

References

  • Abdou, M. M.; O’Neill, P. M.; Amigues, E.; Matziari, M. Phosphinic Acids: Current Status and Potential for Drug Discovery. Drug Discov. Today 2019, 24, 916–929. DOI: 10.1016/j.drudis.2018.11.016.
  • Collinsova, M.; Jiracek, J. Phosphinic Acid Compounds in Biochemistry, Biology and Medicine. CMC 2000, 7, 629–647. DOI: 10.2174/0929867003374831.
  • Yiotakis, A.; Georgiadis, D.; Matziari, M.; Makaritis, A.; Dive, V. Phosphinic Peptides: Synthetic Approaches and Biochemical Evaluation as Zn-Metalloprotease Inhibitors. COC 2004, 8, 1135–1158. DOI: 10.2174/1385272043370177.
  • Mucha, A.; Kafarski, P.; Berlicki, L. Remarkable Potential of the α-Aminophosphonate/Phosphinate Structural Motif in Medicinal Chemistry. J. Med. Chem. 2011, 54, 5955–5980.
  • Georgiadis, D.; Dive, V. Phosphinic Peptides as Potent Inhibitors of Zinc-Metalloproteases. Top. Curr. Chem. 2015, 360, 1–38.
  • Talma, M.; Maślanka, M.; Mucha, A. Recent Developments in the Synthesis and Applications of Phosphinic Peptide Analogs. Bioorg. Med. Chem. Lett. 2019, 29, 1031–1042. DOI: 10.1016/j.bmcl.2019.02.034.
  • Matthews, B. W. Structural Basis of the Action of Thermolysin and Related Zinc Peptidases. Acc. Chem. Res. 1988, 21, 333–340. DOI: 10.1021/ar00153a003.
  • Krapcho, J.; Turk, C.; Cushman, D. W.; Powell, J. R.; DeForrest, J. M.; Spitzmiller, E. R.; Karanewsky, D. S.; Duggan, M. E.; Rovnyak, G. C.; Schwartz, J.; et al. Angiotensin-Converting Enzyme Inhibitors. Mercaptan, Carboxyalkyl Dipeptide, and Phosphinic Acid Inhibitors Incorporating 4-Substituted Prolines. J. Med. Chem. 1988, 31, 1148–1160.
  • Mucha, A. Synthesis and Modifications of Phosphinic Dipeptide Analogues. Molecules 2012, 17, 13530–13568. DOI: 10.3390/molecules171113530.
  • Hooper, N. M.; Lendeckel, U., Eds. Aminopeptidases in Biology and Disease; Springer, New York, NY, 2004.
  • Matsui, M.; Fowler, J. H.; Walling, L. L. Leucine Aminopeptidases: Diversity in Structure and Function. Biol. Chem. 2006, 387, 1535–1544.
  • Drinkwater, N.; Lee, J.; Yang, W.; Malcolm, T. R.; McGowan, S. M1 Aminopeptidases as Drug Targets: Broad Applications or Therapeutic Niche? FEBS J 2017, 284, 1473–1488. DOI: 10.1111/febs.14009.
  • Wickström, M.; Larsson, R.; Nygren, P.; Gullbo, J. Aminopeptidase N (CD13) as a Target for Cancer Chemotherapy. Cancer Sci. 2011, 102, 501–508.
  • Hitzerd, S. M.; Verbrugge, S. E.; Ossenkoppele, G.; Jansen, G.; Peters, G. J. Positioning of Aminopeptidase Inhibitors in Next Generation Cancer Therapy. Amino Acids 2014, 46, 793–808. DOI: 10.1007/s00726-013-1648-0.
  • González-Bacerio, J.; Izquierdo, M.; Aguado, M. E.; Varela, A. C.; González-Matos, M.; del Rivero, M. A. Using Microbial Metalo-Aminopeptidases as Targets in Human Infectious Diseases. Microb. Cell 2021, 8, 239–246. DOI: 10.15698/mic2021.10.761.
  • Grembecka, J.; Mucha, A.; Cierpicki, T.; Kafarski, P. The Most Potent Organophosphorus Inhibitors of Leucine Aminopeptidase. Structure-Based Design, Chemistry, and Activity. J. Med. Chem. 2003, 46, 2641–2655.
  • Węglarz-Tomczak, E.; Poręba, M.; Byzia, A.; Berlicki, Ł.; Nocek, B.; Mulligan, R.; Joachimiak, A.; Drąg, M.; Mucha, A. An Integrated Approach to the Ligand Binding Specificity of Neisseria meningitidis M1 Alanine Aminopeptidase by Fluorogenic Substrate Profiling, Inhibitory Studies and Molecular Modeling. Biochimie 2013, 95, 419–428. DOI: 10.1016/j.biochi.2012.10.018.
  • Skinner-Adams, T. S.; Lowther, J.; Teuscher, F.; Stack, C. M.; Grembecka, J.; Mucha, A.; Kafarski, P.; Trenholme, K. R.; Dalton, J. P.; Gardiner, D. L. Identification of Phosphinate Dipeptide Analog Inhibitors Directed against the Plasmodium falciparum M17 Leucine Aminopeptidase as Lead Antimalarial Compounds. J. Med. Chem. 2007, 50, 6024–6031.
  • McGowan, S.; Porter, C. J.; Lowther, J.; Stack, C. M.; Golding, S. J.; Skinner-Adams, T. S.; Trenholme, K. R.; Teuscher, F.; Donnelly, S. M.; Grembecka, J.; et al. Structural Basis for the Inhibition of the Essential Plasmodium falciparum M1 Neutral Aminopeptidase. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 2537–2542. DOI: 10.1073/pnas.0807398106.
  • Vassiliou, S.; Węglarz-Tomczak, E.; Berlicki, Ł.; Pawełczak, M.; Nocek, B.; Mulligan, R.; Joachimiak, A.; Mucha, A. Structure-Guided, Single-Point Modifications in the Phosphinic Dipeptide Structure Yield Highly Potent and Selective Inhibitors of Neutral Aminopeptidases. J. Med. Chem. 2014, 57, 8140–8151.
  • Wong, A. H. M.; Zhou, D.; Rini, J. M. The X-Ray Crystal Structure of Human Aminopeptidase N Reveals a Novel Dimer and the Basis for Peptide Processing. J. Biol. Chem. 2012, 287, 36804–36813.
  • Krajewska, B. Ureases I. Functional, Catalytic and Kinetic Properties: A Review. J. Mol. Catal. B Enzym. 2009, 59, 9–21. DOI: 10.1016/j.molcatb.2009.01.003.
  • Follmer, C. Ureases as a Target for the Treatment of Gastric and Urinary Infections. J. Clin. Pathol. 2010, 63, 424–430.
  • Rego, Y. F.; Queiroz, M. P.; Brito, T. O.; Carvalho, P. G.; de Queiroz, V. T.; de Fátima, Â.; Macedo, F. A Review on the Development of Urease Inhibitors as Antimicrobial Agents against Pathogenic Bacteria. J. Adv. Res. 2018, 13, 69–100.
  • Kafarski, P.; Talma, M. Recent Advances in Design of New Urease Inhibitors: A Review. J. Adv. Res. 2018, 13, 101–112.
  • Xiao, Z.-P.; Ma, T.-W.; Fu, W.-C.; Peng, X.-C.; Zhang, A.-H.; Zhu, H.-L. The Synthesis, Structure and Activity Evaluation of Pyrogallol and Catechol Derivatives as Helicobacter pylori Urease Inhibitors. Eur. J. Med. Chem. 2010, 45, 5064–5070.
  • Macegoniuk, K.; Grela, E.; Palus, J.; Rudzińska-Szostak, E.; Grabowiecka, A.; Biernat, M.; Berlicki, Ł. 1,2-Benzisoselenazol-3(2H)-One Derivatives as a New Class of Bacterial Urease Inhibitors. J. Med. Chem. 2016, 59, 8125–8133.
  • Macegoniuk, K.; Kowalczyk, R.; Rudzińska, E.; Psurski, M.; Wietrzyk, J.; Berlicki, Ł. Potent Covalent Inhibitors of Bacterial Urease Identified by Activity-Reactivity Profiling. Bioorg. Med. Chem. Lett. 2017, 27, 1346–1350.
  • Mazzei, L.; Cianci, M.; Musiani, F.; Lente, G.; Palombo, M.; Ciurli, S. Inactivation of Urease by Catechol: Kinetics and Structure. J. Inorg. Biochem. 2017, 166, 182–189.
  • Pagoni, A.; Grabowiecka, A.; Tabor, W.; Mucha, A.; Vassiliou, S.; Berlicki, Ł. Covalent Inhibition of Bacterial Urease by Bifunctional Catechol-Based Phosphonates and Phosphinates. J. Med. Chem. 2021, 64, 404–416. DOI: 10.1021/acs.jmedchem.0c01143.
  • Jameson, G. N. L.; Zhang, J.; Jameson, R. F.; Linert, W. Kinetic Evidence That Cysteine Reacts with Dopaminoquinone via Reversible Adduct Formation to Yield 5-Cysteinyl-Dopamine: An Important Precursor of Neuromelanin. Org. Biomol. Chem. 2004, 2, 777–782.
  • Li, Y.; Jongberg, S.; Andersen, M. L.; Davies, M. J.; Lund, M. N. Quinone-Induced Protein Modifications: Kinetic Preference for Reaction of 1,2-Benzoquinones with Thiol Groups in Proteins. Free Radic. Biol. Med. 2016, 97, 148–157. DOI: 10.1016/j.freeradbiomed.2016.05.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.