186
Views
3
CrossRef citations to date
0
Altmetric
Short Communication

Designing biaryl phosphacyclic ligands: their characterization and evaluation in palladium-catalyzed Suzuki-Miyaura reactions of aryl bromides and chlorides

ORCID Icon, , &
Pages 587-592 | Received 29 Oct 2021, Accepted 24 Nov 2021, Published online: 08 Dec 2021

References

  • A. De, M.; Diederich, F. Metal‐Catalyzed Cross‐Coupling Reactions; Wiley-VCH: Weinheim, Germany, 2014; Chp 1–2, pp 1–104.
  • Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Palladium-Catalyzed Cross-Coupling Reactions in Total Synthesis. Angew. Chem. Int. Ed. Engl. 2005, 44, 4442–4489.
  • Colacot, T. J. New Trends in Cross-Coupling Theory and Applications; Royal Society of Chemistry: Cambridge, UK, 2015; Chp 2, 5, pp 20–72, 228–250.
  • Taheri Kal Koshvandi, A.; Heravi, M. M.; Momeni, T. Current Applications of Suzuki–Miyaura Coupling Reaction in the Total Synthesis of Natural Products: An Update. Appl. Organomet. Chem. 2018, 32, 1–59.
  • Selepe, M. A.; Van Heerden, F. R. Application of the Suzuki-Miyaura Reaction in the Synthesis of Flavonoids. Molecules 2013, 18, 4739–4765. DOI: 10.3390/molecules18044739.
  • Torborg, C.; Beller, M. Recent Applications of Palladium-Catalyzed Coupling Reactions in the Pharmaceutical, Agrochemical, and Fine Chemical Industries. Adv. Synth. Catal. 2009, 351, 3027–3043. DOI: 10.1002/adsc.200900587.
  • Bedford, R. B.; Cazin, C. S. J.; Coles, S. J.; Gelbrich, T.; Horton, P. N.; Hursthouse, M. B.; Light, M. E. High-Activity Catalysts for Suzuki Coupling and Amination Reactions with Deactivated Aryl Chloride Substrates: Importance of the Palladium Source. Organometallics 2003, 22, 987–999. DOI: 10.1021/om020841+.
  • Fu, G. C. The Development of Versatile Methods for Palladium-Catalyzed Coupling Reactions of Aryl Electrophiles through the Use of P(t-Bu)3 and PCy3 as Ligands. Acc. Chem. Res. 2008, 41, 1555–1564. DOI: 10.1021/ar800148f.
  • Martin, R.; Buchwald, S. L. Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling Reactions Employing Dialkylbiaryl Phosphine Ligands. Acc. Chem. Res. 2008, 41, 1461–1473.
  • Kataoka, N.; Shelby, Q.; Stambuli, J. P.; Hartwig, J. F. Air Stable, Sterically Hindered Ferrocenyl Dialkylphosphines for Cross-Couplings. J. Org. Chem. 2002, 67, 5553–5566.
  • Carreira, M.; Charernsuk, M.; Eberhard, M.; Fey, N.; Van Ginkel, R.; Hamilton, A.; Mul, W. P.; Orpen, A. G.; Phetmung, H.; Pringle, P. G. Anatomy of Phobanes. Diastereoselective Synthesis of the Three Isomers of n-Butylphobane and a Comparison of Their Donor Properties. J. Am. Chem. Soc. 2009, 131, 3078–3092. DOI: 10.1021/ja808807s.
  • Dodds, D. L.; Floure, J.; Garland, M.; Haddow, M. F.; Leonard, T. R.; McMullin, C. L.; Orpen, A. G.; Pringle, P. G. Diphosphanes Derived from Phobane and Phosphatrioxa-Adamantane: Similarities, Differences and Anomalies. J. Chem. Soc., Dalton Trans. 2011, 40, 7137–7146. DOI: 10.1039/c1dt10335k.
  • Bungu, P. N.; Otto, S. Bicyclic Phosphines as Ligands for Cobalt Catalysed Hydroformylation. Crystal Structures of [Co(Phoban[3.3.1]-Q)(CO)3]2 (Q = C2H5, C5H11, C3H6NMe2 C6H11). J. Chem. Soc., Dalton. Trans. 2007, 2, 2876–2884.
  • Bungu, P. N.; Otto, S. Steric and Electronic Properties in Bicyclic Phosphines. Crystal and Molecular Structures of Se = Phoban-Q(Q = C2, C3Ph, Cy and Ph). Crystal. J. Organomet. Chem. 2007, 692, 3370–3379. DOI: 10.1016/j.jorganchem.2007.04.001.
  • Brenstrum, T.; Gerristma, D. A.; Adjabeng, G. M.; Frampton, C. S.; Britten, J.; Robertson, A. J.; McNulty, J.; Capretta, A. Phosphaadamantanes as Ligands for Palladium Catalyzed Cross-Coupling Chemistry: Library Synthesis, Characterization, and Screening in the Suzuki Coupling of Alkyl Halides and Tosylates Containing β-Hydrogens with Boronic Acids and Alkylboranes. J. Org. Chem. 2004, 69, 7635–7639.
  • Adjabeng, G.; Brenstrum, T.; Wilson, J.; Frampton, C.; Robertson, A.; Hillhouse, J.; McNulty, J.; Capretta, A. Novel Class of Tertiary Phosphine Ligands Based on a Phospha-Adamantane Framework and Use in the Suzuki Cross-Coupling Reactions of Aryl Halides under Mild Conditions. Org. Lett. 2003, 5, 953–955.
  • Le, C. M.; Hou, X.; Sperger, T.; Schoenebeck, F.; Lautens, M. An Exclusively Trans-Selective Chlorocarbamoylation of Alkynes Enabled by a Palladium/Phosphaadamantane Catalyst. Angew. Chem. Int. Ed. Engl. 2015, 54, 15897–15900.
  • Alexander, J. K.; Zakharov, L. N.; Tyler, D. R. Steric and Electronic Influences of Buchwald-Type Alkyl-JohnPhos Ligands. Inorg. Chem 2016, 55, 3079.
  • Kamer, P. C. J.; van Leeuwen, P. W. N. M. Phosphorus(III) Ligands in Homogenous Catalysis; John Wiley & Sons, Ltd.: London, UK, 2012; Chp 13, pp 391–402.
  • Maumela, C.; Blann, K.; Dixon, J. T.; Gabrielli, W. F. Efficient Synthesis of Novel N-Substituted Bulky Diphosphinoamines. Synth. No. Scheme 2007, 1, 1–5.
  • Tschan, M. J. L.; Garcia-Suarez, E. J.; Freixa, Z.; Launay, H.; Hagen, H.; Benet-Buchholz, J.; van Leeuwen, P. W. N. M. Efficient Bulky Phosphines for the Selective Telomerization of 1,3-Butadiene with Methanol. J. Am. Chem. Soc. 2010, 132, 6463–6473.
  • Chen, L.; Ren, P.; Carrow, B. P. Tri(1-Adamantyl) Phosphine: Expanding the Boundary of Electron-Releasing Character Available to Organophosphorus Compounds. J. Am. Chem. Soc. 2016, 138, 6392–9395. and references cited therein. DOI: 10.1021/jacs.6b03215.
  • Allen, D. W.; Nowell, I. W.; Taylor, B. F. The Chemistry of Heteroarylphosphorus Compounds. Part 16. Unusual Substituent Effects on Selenium-77 Nuclear Magnetic Resonance Chemical Shifts of Heteroaryl- and Aryl-Phosphine Selenides. X-Ray Crystal Structure of Tri(2-Furyl)Phosphine Selenide. J. Chem. Soc. Dalt. Trans. 1985, 834, 2505–2508.
  • Maluenda, I.; Navarro, O. Recent Developments in the Suzuki-Miyaura Reaction: 2010-2014. Molecules 2015, 20, 7528–7557. DOI: 10.3390/molecules20057528.
  • Dwadnia, N.; Roger, J.; Pirio, N.; Cattey, H.; Ben Salem, R.; Hierso, J. C. Gold-Catalyzed Suzuki Coupling of Ortho-Substituted Hindered Aryl Substrates. Chem. Asian J. 2017, 12, 459–464. DOI: 10.1002/asia.201601583.
  • Vuoti, S.; Autio, J.; Laitila, M.; Haukka, M.; Pursiainen, J. Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling of Various Aryl Halides Using Ortho-Alkyl-Substituted Arylphosphanes and (Ortho-Alkylphenyl)-Alkylphosphanes under Microwave Heating. Eur. J. Inorg. Chem. 2008, 1, 397–407.
  • Ackermann, L.; Potukuchi, H. K.; Althammer, A.; Born, R.; Mayer, P. Tetra-Ortho-Substituted Biaryls through Palladium-Catalyzed Suzuki Miyaura Couplings with a Diaminochlorophosphine Ligand. Org. Lett. 2010, 12, 1004–1007.
  • Chun To, S.; Yee Kwong, F. Yee Kwong, F. Highly Efficient Carbazolyl-Derived Phosphine Ligands: Application to Sterically Hindered Biaryl Couplings. Chem. Commun. 2011, 47, 5079–5081. DOI: 10.1039/c1cc10708a.
  • Khaibulova, T. S.; Boyarskaya, I. A.; Boyarskii, V. P. Steric Effect of Substituents in Haloarenes on the Rate of Cross-Coupling Reactions. Russ. J. Org. Chem. 2013, 49, 360–365. DOI: 10.1134/S1070428013030081.
  • Li, J. H.; Deng, C. L.; Xie, Y. X. Solvent-Free, Palladium-Catalyzed Suzuki-Miyaura Cross-Couplings of Aryl Chlorides with Arylboronic Acids. Synth. Commun. 2007, 37, 2433–2448. DOI: 10.1080/00397910701412828.
  • Rigaku Oxford Diffraction. CrysAlisPro. Software System, 2018.
  • Sheldrick, G. M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. A Found. Adv. 2015, 71, 3–8. DOI: 10.1107/S2053273314026370.
  • Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. DOI: 10.1107/S0021889808042726.
  • Chen, H.; Huang, Z.; Hu, X.; Tang, G.; Xu, P.; Zhao, Y.; Cheng, C. Nickel-Catalyzed Cross-Coupling of Aryl Phosphates with Arylboronic Acids. J. Org. Chem. 2011, 76, 2338–2344.
  • Rizzo, G.; Albano, G.; Lo Presti, M.; Milella, A.; Omenetto, F. G.; Farinola, G. M. Palladium Supported on Silk Fibroin for Suzuki–Miyaura Cross-Coupling Reactions. Eur. J. Org. Chem. 2020, 2020, 6992–6996. DOI: 10.1002/ejoc.202001120.
  • Zhou, T.; Xie, P. P.; Ji, C. L.; Hong, X.; Szostak, M. Decarbonylative Suzuki-Miyaura Cross-Coupling of Aroyl Chlorides. Org. Lett. 2020, 22, 6434–6440.
  • Lin, B.; Liu, Z.; Liu, M.; Pan, C.; Ding, J.; Wu, H.; Cheng, J. Aminophosphine Supported on Al2O3 as Recoverable Catalyst for the Suzuki Coupling. Catal. Commun. 2007, 8, 2150–2152. DOI: 10.1016/j.catcom.2007.04.009.
  • Lai, B.; Ye, M.; Liu, P.; Li, M.; Bai, R.; Gu, Y. A Novel and Robust Heterogeneous Cu Catalyst Using Modified Lignosulfonate as Support for the Synthesis of Nitrogen-Containing Heterocycles. Beilstein J. Org. Chem. 2020, 16, 2888–2902.
  • Chen, X.; Chen, J.; Bao, Z.; Yang, Q.; Yang, Y.; Ren, Q.; Zhang, Z. MIL-101(Cr)-SO3H Catalyzed Transfer Hydrogenation of 2-Substituted Quinoline Derivatives. Chin. J. Org. Chem. 2019, 39, 1681–1687. DOI: 10.6023/cjoc201902028.
  • Ni, S.; Hribersek, M.; Baddigam, S. K.; Ingner, F. J. L.; Orthaber, A.; Gates, P. J.; Pilarski, L. T. Mechanochemical Solvent-Free Catalytic C–H Methylation. Angew. Chem. Int. Ed. Engl. 2021, 60, 6660–6666.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.