265
Views
0
CrossRef citations to date
0
Altmetric
Articles

A comparative conformational study of (C6H5O)2P(O)(NHC(S)NHCH2C6H5) and analogous X-ray structures: energy calculations (solid-state/gas phase)

ORCID Icon, ORCID Icon, &
Pages 747-757 | Received 12 Jul 2021, Accepted 17 Dec 2021, Published online: 30 Dec 2021

References

  • Mezzenga, R.; Mitsi, M. The Molecular Dance of Fibronectin: Conformational Flexibility Leads to Functional Versatility. Biomacromolecules 2019, 20, 55–72. DOI: 10.1021/acs.biomac.8b01258.
  • Gras, S. L.; Mahmud, T.; Rosengarten, G.; Mitchell, A.; Kalantar-Zadeh, K. Intelligent Control of Surface Hydrophobicity. ChemPhysChem. 2007, 8, 2036–2050. DOI: 10.1002/cphc.200700222.
  • Mondal, P.; Rath, S. P. Cyclic Metalloporphyrin Dimers: Conformational Flexibility, Applications and Future Prospects. Coord. Chem. Rev. 2020, 405, 213117. DOI: 10.1016/j.ccr.2019.213117.
  • Hasija, A.; Chopra, D. Exploring Concomitant/Conformational Dimorphism in a Difluoro-Substituted Phosphoramidate Derivative. Acta Crystallogr. C. Struct. Chem. 2019, 75, 451–461. DOI: 10.1107/S2053229619003589.
  • Alvarez, M. A.; Saavedra, E. J.; Olivella, M. S.; Suvire, F. D.; Zamora, M. A.; Enriz, R. D. Theoretical Study of the Conformational Energy Hypersurface of Cyclotrisarcosyl. Cent. Eur. J. Chem. 2012, 10, 248–255. DOI: 10.2478/s11532-011-0136-1.
  • Cruz-Cabeza, A. J.; Bernstein, J. Conformational Polymorphism. Chem. Rev. 2014, 114, 2170–2191. DOI: 10.1021/cr400249d.
  • Yu, L.; Reutzel-Edens, S. M.; Mitchell, C. A. Crystallization and Polymorphism of Conformationally Flexible Molecules: Problems, Patterns, and Strategies. Org. Process Res. Dev. 2000, 4, 396–402. DOI: 10.1021/op000028v.
  • Wanat, M.; Malinska, M.; Kutner, A.; Wozniak, K. Effect of Vitamin D Conformation on Interactions and Packing in the Crystal Lattice. Cryst. Growth Des. 2018, 18, 3385–3396. DOI: 10.1021/acs.cgd.8b00091.
  • Sokolov, F. D.; Baranov, S. V.; Safin, D. A.; Hahn, F. E.; Kubiak, M.; Pape, T.; Babashkina, M. G.; Zabirov, N. G.; Galezowska, J.; Kozlowski, H.; Cherkasov, R. A. The Influence of the Intramolecular Hydrogen Bond on the 1,3-N,S- and 1,5-O,S-Coordination of N-Phosphoryl-N′-(R)-Thioureas with Ni(II) and Pd(II). New J. Chem. 2007, 31, 1661–1667. DOI: 10.1039/b702896b.
  • Safin, D. A.; Sokolov, F. D.; Szyrwiel, Ł.; Baranov, S. V.; Babashkina, M. G.; Gimadiev, T. R.; Kozlowski, H. Monodentate S-vs. Bidentate 1,5-O,S-Coordination of N-Phosphoryl-N′-(R)-Thioureas with Pd(II). Polyhedron 2008, 27, 1995–1998. DOI: 10.1016/j.poly.2008.03.012.
  • Safin, D. A.; Babashkina, M. G.; Klein, A.; Nöth, H.; Bolte, M.; Krivolapov, D. B. Solvent-Dependent Formation of Two Different Cd(II) Complexes with p-BrC6H4C(S)NHP(O)(OiPr)2 (HL). Crystallographic Modification of Cd(HL)2L2. Polyhedron 2010, 29, 1837–1841. DOI: 10.1016/j.poly.2010.02.031.
  • Safin, D. A.; Babashkina, M. G.; Bolte, M.; Szyrwiel, Ł.; Klein, A.; Kozlowski, H. Complexes of Co(II) and Zn(II) with N-(Thio)Phosphorylthioureas AdNHC(S)NHP(O)(OiPr)2 and MeNHC(S)NHP(S)(OiPr)2. Phosphorus Sulfur Silicon Relat. Elem. 2010, 185, 1739–1745. DOI: 10.1080/10426500903251365.
  • Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. The Cambridge Structural Database. Acta Crystallogr. B. Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171–179. DOI: 10.1107/S2052520616003954.
  • Osipova, O. V.; Terekhova, M. I.; Bizyaeva, A. Y.; Kolesova, V. A.; Petrov, E. S.; Bel’skii, V. K. Equilibrium NH Acidity of 4-Phosphorylated Allophonates and Thioallophonates. Zh. Obshch. Khim. 1989, 59, 616–621.
  • Babashkina, M. G.; Robeyns, K.; Filinchuk, Y.; Safin, D. A. Detailed Studies of the Interaction of 3-Chloroaniline with O,O′-Diphenylphosphorylisothiocyanate. New J. Chem. 2016, 40, 1230–1236. DOI: 10.1039/C5NJ02588E.
  • Babashkina, M. G.; Safin, D. A.; Robeyns, K.; Garcia, Y. A Neutral 1D Coordination Polymer Constructed from the NiII Complex of the N-Phosphorylated Thiourea PhNHC(S)NHP(O)(OPh)2 and Pyrazine: A Single-Source Precursor for Nickel Nanoparticles. Eur. J. Inorg. Chem. 2015, 2015, 1160–1166. DOI: 10.1002/ejic.201402278.
  • Safin, D. A.; Babashkina, M. G.; Robeyns, K.; Mitoraj, M. P.; Kubisiak, P.; Brela, M.; Garcia, Y. Experimental and Theoretical Investigations of the NiII Complex with N-Phosphorylated Thiourea iPrNHC(S)NHP(O)(OPh)2. CrystEngComm. 2013, 15, 7845–7851. DOI: 10.1039/c3ce41195h.
  • Safin, D. A.; Sokolov, F. D.; Szyrwiel, Ł.; Babashkina, M. G.; Gimadiev, T. R.; Hahn, F. E.; Kozlowski, H.; Krivolapov, D. B.; Litvinov, I. A. Nickel(II) Complexes with N-(Thio)Phosphoryl-Thioureas AdNHC(S)NHP(X)(OiPr)2: Versatile Coordination of Phosphoryl (X = O) and Thiophosphoryl (X = S) Derivatives. Polyhedron 2008, 27, 2271–2276. DOI: 10.1016/j.poly.2008.04.014.
  • Safin, D. A.; Babashkina, M. G.; Bolte, M.; Klein, A. Synthesis and Characterization of N-Phosphorylated Thioureas RNHC(S)NHP(O)(OiPr)2 (R = 2-MeC6H4, 2,6-Me2C6H3, 2,4,6-Me3C6H2). J. Chem. Sci. 2010, 122, 409–413. DOI: 10.1007/s12039-010-0046-3.
  • Babashkina, M. G.; Safin, D. A.; Bolte, M.; Klein, A. Synthesis of N-(Thio)Phosphorylated Thiosemicarbazides RC(S)NHP(X)(OiPr)2 (X = S, R = NH2N(Me)–; X = O, R = NH2N(Me)–, PhNHNH–): Reaction of NH2N(Me)C(S)NHP(S)(OiPr)2 with Acetone. Polyhedron 2009, 28, 2693–2697. DOI: 10.1016/j.poly.2009.05.042.
  • Safin, D. A.; Babashkina, M. G.; Bolte, M.; Klein, A. Synthesis, Characterization and Complexation Properties of N-Phosphorylated Thioureas RNHC(S)NHP(O)(OiPr)2 (R = 2-Py, 3-Py) towards Ni(II). Inorg. Chim. Acta 2010, 363, 1791–1795. DOI: 10.1016/j.ica.2010.02.029.
  • Safin, D. A.; Babashkina, M. G.; Klein, A.; Sokolov, F. D.; Baranov, S. V.; Pape, T.; Hahn, F. E.; Krivolapov, D. B. The Influence of an Intramolecular Hydrogen Bond on the 1,3-N,S-Coordination of Crown Ether-Containing N-Phosphorylthiourea with NiII. New J. Chem. 2009, 33, 2443–2448. DOI: 10.1039/b9nj00252a.
  • Safin, D. A.; Babashkina, M. G.; Bolte, M.; Klein, A. The Influence of the Spacer Z on N-Phosphorylated Bis-Thioureas and 2,5-Dithiobiurea Z[C(S)NHP(O)(OiPr)2]2 (Z = –NHCH2CH2NH–, –NHC6H4-2-NH–, –NHNH–) Crystal Design. Polyhedron 2009, 28, 1403–1408. DOI: 10.1016/j.poly.2009.02.044.
  • Camerman, N.; Camerman, A. Cyclophosphamide Structure. Molecular Structure of 4-Ketocyclophosphamide. J. Am. Chem. Soc. 1973, 95, 5038–5041. DOI: 10.1021/ja00796a042.
  • Spartan 14; Wavefunction, Inc.: Irvine, CA, 2013.
  • Frisch, M. J. GAUSSIAN09; Gaussian Inc.: Wallingford, CT, 2009.
  • Spackman, M. A.; Jayatilaka, D. Hirshfeld Surface Analysis. CrystEngComm. 2009, 11, 19–32. DOI: 10.1039/B818330A.
  • Spackman, M. A.; McKinnon, J. J. Fingerprinting Intermolecular Interactions in Molecular Crystals. CrystEngComm. 2002, 4, 378–392. DOI: 10.1039/B203191B.
  • Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer; University of Western Australia: Perth, Western Australia, 2017.
  • Jelsch, C.; Ejsmont, K.; Huder, L. The Enrichment Ratio of Atomic Contacts in Crystals, an Indicator Derived from the Hirshfeld Surface Analysis. IUCrJ 2014, 1, 119–128. DOI: 10.1107/S2052252514003327.
  • Potrzebowski, M. J.; Michalska, M.; Kozioł, A. E.; Każmierski, S.; Lis, T.; Pluskowski, J.; Ciesielski, W. Structural Implications of C − H···S Contacts in Organophosphorus Compounds. Studies of 1,6-Anhydro-2-O-Tosyl-4-S-(5,5-Dimethyl-2-Thioxa-1,3,2-Dioxaphosphorinan-2-Yl)-β-D-Glucopyranose by X-Ray and Solid-State NMR Methods. J. Org. Chem. 1998, 63, 4209–4217. DOI: 10.1021/jo971294i.
  • Thomas, S. P.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. Accurate Lattice Energies for Molecular Crystals from Experimental Crystal Structures. J. Chem. Theory Comput. 2018, 14, 1614–1623. DOI: 10.1021/acs.jctc.7b01200.
  • Mackenzie, C. F.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer Model Energies and Energy Frameworks: Extension to Metal Coordination Compounds, Organic Salts, Solvates and Open-Shell Systems. IUCrJ 2017, 4, 575–587. DOI: 10.1107/S205225251700848X.
  • Bader, R. F. W. Atoms in Molecules: A Quantum Theory; International Series of Monographs on Chemistry; Oxford University Press: Oxford, UK; New York, 1994.
  • Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. DOI: 10.1002/jcc.22885.
  • Espinosa, E.; Molins, E.; Lecomte, C. Hydrogen Bond Strengths Revealed by Topological Analyses of Experimentally Observed Electron Densities. Chem. Phys. Lett. 1998, 285, 170–173. DOI: 10.1016/S0009-2614(98)00036-0.
  • Cooper, R. I.; Thompson, A. L.; Watkin, D. J. CRYSTALS Enhancements: Dealing with Hydrogen Atoms in Refinement. J. Appl. Crystallogr. 2010, 43, 1100–1107. DOI: 10.1107/S0021889810025598.
  • Rigaku, O. D. CrysAlis PRO; Rigaku Oxford Diffraction Ltd.: Oxfordshire, UK, 2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.