120
Views
0
CrossRef citations to date
0
Altmetric
Article

Structural, microstructural and mechanical properties of Cr3P2 chromium phosphide powders

, , , , & ORCID Icon
Pages 644-653 | Received 16 Nov 2021, Accepted 17 Dec 2021, Published online: 28 Dec 2021

References

  • Tharamani, C. N.; Begum, N. S.; Mayanna, S. M. Electroless Deposition and Characterization of Cr–P Alloys. Mat. Chem. Phys. 2004, 83, 278–283. DOI: 10.1016/j.matchemphys.2003.09.028.
  • Du, J.; Zhang, F.; Wang, Z.; Shang, Y.; Zhou, L.; Fan, Y.; Yu, M.; Wang, Y.; Kang, D. J. Synthesis of Binary Metal Phosphides Heterostructures as a Stable and Efficient Hydrogen Evolution Reaction Electrocatalyst. Mater. Today Commun. 2020, 25, 101257–101266. DOI: 10.1016/j.mtcomm.2020.101257.
  • Yu, S.; Cai, W.; Chen, L.; Song, L.; Song, Y. Recent Advances of Metal Phosphides for Li–S. J. Energy. Chem. 2021, 55, 533–548. DOI: 10.1016/j.jechem.2020.07.020.
  • Shashikala, A. R.; Tharamani, C. N.; Uma Rani, R.; Sharma, A. K.; Mayanna, S. M. Development and Characterisation of Electroless Cr–P Alloy as a Decorative Coating for Automobiles. Surf. Eng. 2005, 21, 221–224. DOI: 10.1179/174329405X50055.
  • Watanabe, T.; Sakurai, Y.; Hamakaw, Y.; Masumoto, T.; Shirae, K.; Suzuki K., Eds., Current Topics in Amorphous Materials—Physics and Technology; Elsevier: New York, 1993; p 137.
  • Jiten, D.; Chandra, K.; Misra, P. S.; Sarma, B. Novel Powder Metallurgy Technique for Development of Fe–P-Based Soft Magnetic Materials. J. Magn. Magn. Mater. 2008, 320, 906–915. DOI: 10.1016/j.jmmm.2007.09.013.
  • De Antonio, D. A. Soft Magnetic Ferritic Stainless Steels. Adv. Mater. Process. 2003, 161, 29–32.
  • Kimoto, K.; Nishida, I. An Electron Diffraction Study on the Crystal Structure of a New Modification of Chromium. J. Phys. Soc. Jpn. 1967, 22, 744–756. DOI: 10.1143/JPSJ.22.744.
  • Publishing PhysicsWeb. https://www.elementschimiques.fr/?fr/elements/z/24 (accessed June 26, 2021).
  • Saal, J. E.; Kirklin, S.; Aykol, M.; Meredig, B.; Wolverton, C. Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD). JOM 2013, 65, 1501–1509. DOI: 10.1007/s11837-013-0755-4.
  • Kirklin, S.; Saal, J. E.; Meredig, B.; Thompson, A.; Doak, J. W.; Aykol, M.; Rühl, S.; Wolverton, C. The Open Quantum Materials Database (OQMD): Assessing the Accuracy of DFT Formation Energies. npj Comput. Mater. 2015, 1, 15010. . DOI: 10.1038/npjcompumats.2015.10.
  • Schonberg, N. An X-Ray Investigation of Transition Metal Phosphides. Acta Chem. Scand. 1954, 8, 226–239. DOI: 10.3891/acta.chem.scand.08-0226.
  • Ripley, R. L. The Preparation and Properties of Some Transition Metal Phosphides. J. Less-Common Met. 1962, 4, 496–503. DOI: 10.1016/0022-5088(62)90037-1.
  • Selte, K.; Hjersing, H.; Kjekshus, A.; Andresen, A. F.; Fischer, P. Magnetic Structures and Properties of CrP(1-x)as(x). Acta Chem. Scand. 1975, 29a, 689–695. DOI: 10.3891/acta.chem.scand.29a-0695.
  • Li, D.; Yin, J.; Dong, L.; Lakes, R. S. Strong Re-Entrant Cellular Structures with Negative Poisson’s Ratio. J. Mater. Sci. 2018, 53, 3493–3499. DOI: 10.1007/s10853-017-1809-8.
  • Hoguin, S. Stocker de L’énergie Mécanique Grâce Aux Matériaux Auxétiques. Technique de L’ingénieur, Matériaux Biotech et Chimie 2018.
  • Rietveld, H. M. Line Profiles of Neutron Powder-Diffraction Peaks for Structure Refinement. Acta Cryst. 1967, 22, 151–152. DOI: 10.1107/S0365110X67000234.
  • Rietveld, H. M. A Profile Refinement Method for Nuclear and Magnetic Structures. J. Appl. Crystallogr. 1969, 2, 65–71. DOI: 10.1107/S0021889869006558.
  • Lutterotti, L. Introduction to Diffraction and the Rietveld Method, Course: Materials Science and Technology Laboratory; University of Turin: Italy, 2000.
  • Kittel, C. Introduction à la physique de l'état solide, Ed. Dunod, 1972.
  • Popa, N. C. The (Hkl) Dependence of Diffraction-Line Broadening Caused by Strain and Size for All Laue Groups in Rietveld Refinement. J. Appl. Crystallogr. 1998, 31, 176–180. DOI: 10.1107/S0021889897009795.
  • Zhao, Y.; Sheng, H.; Lu, K. Microstructure Evolution and Thermal Properties in Nanocrystalline Fe during Mechanical Attrition. Acta Mater. 2001, 49, 365–375. DOI: 10.1016/S1359-6454(00)00310-4.
  • Louidi, S.; Bentayeb, F. Z.; Tebib, W.; Sunol, J. J.; Escoda, L.; Mercier, A. M. Stacking Faults and Phase Transformations Study in Ball Milled Co100−xCrx (x = 0, 20, 50) Alloys. Mater. Chem. Phys. 2012, 132, 761–765. DOI: 10.1016/j.matchemphys.2011.12.008.
  • Stibitz, G. Energy and Lattice Spacing in the Strained Solids. J. Phys. Rev. 1937, 49, 872.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.