243
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, characterization, and spectroscopic properties of the new type of aminoquinoline-modified cyclotriphosphazenes

ORCID Icon & ORCID Icon
Pages 825-835 | Received 02 Sep 2021, Accepted 20 Feb 2022, Published online: 11 Mar 2022

References

  • Matada, B. S.; Pattanashettar, R.; Yernale, N. G. A Comprehensive Review on the Biological İnterest of Quinoline and İts Derivatives. Bioorg. Med. Chem. 2021, 32, 115973. DOI: 10.1016/j.bmc.2020.115973.
  • D'Souza, V. T.; Nayak, J.; D'Mello, D. E.; Dayananda, P. Synthesis and Characterization of Biologically İmportant Quinoline İncorporated Triazole Derivatives. J. Mol. Struct. 2021, 1229, 129503. DOI: 10.1016/j.molstruc.2020.129503.
  • Ren, Y.; Ruan, Y.; Cheng, B.; Li, L.; Liu, J.; Fang, Y.; Chen, J. Design, Synthesis and Biological Evaluation of Novel Acridine and Quinoline Derivatives as Tubulin Polymerization İnhibitors with Anticancer Activities. Bioorg. Med. Chem. 2021, 46, 116376. DOI: 10.1016/j.bmc.2021.116376.
  • Manikala, V.; Rao, V. M. Synthesis, and Biological Evaluation of Chalcone Tethered Quinoline Derivatives as Anticancer Agents. Chem. Data Collect 2020, 28, 100423. DOI: 10.1016/j.cdc.2020.100423.
  • Van de Walle, T.; Boone, M.; Van Puyvelde, J.; Combrinck, J.; Smith, P. J.; Chibale, K.; Mangelinckx, S.; D’hooghe, M. Synthesis and Biological Evaluation of Novel Quinoline-Piperidine Scaffolds as Antiplasmodium Agents. Eur. J. Med. Chem. 2020, 198, 112330. DOI: 10.1016/j.ejmech.2020.112330.
  • Chu, X.-M.; Wang, C.; Liu, W.; Liang, L.-L.; Gong, K.-K.; Zhao, C.-Y.; Sun, K.-L. Quinoline and Quinolone Dimers and Their Biological Activities: An Overview. Eur. J. Med. Chem. 2019, 161, 101–117. DOI: 10.1016/j.ejmech.2018.10.035.
  • Yu, Y.; Wang, J.; Xiang, H.; Ying, L.; Wu, C.; Zhou, H.; Liu, H. A New Near-İnfrared Ratiometric Fluorescent Probe Based on Quinoline-Fused Rhodamine Dye for Sensitive Detection of Cysteine and Homocysteine in Mitochondria. Dyes Pigm 2020, 183, 108710. DOI: 10.1016/j.dyepig.2020.108710.
  • Medeiros, G. A.; Correa, J. R.; de Andrade, L. P.; Lopes, T. O.; de Oliveira, H. C. B.; Diniz, A. B.; Menezes, G. B.; Rodrigues, M. O.; Neto, B. A. D. A Benzothiadiazole-Quinoline Hybrid Sensor for Specific Bioimaging and Surgery Procedures in Mice. Sens. Actuators B: Chem. 2021, 328, 128998. DOI: 10.1016/j.snb.2020.128998.
  • Sachdeva, T.; Gupta, S.; Milton, M. D. Smart Organic Materials with Acidochromic Properties. COC. 2020, 24, 1976–1998. DOI: 10.2174/1385272824999200729132853.
  • Chandrasekhar, V.; Thilagar, P.; Murugesa Pandian, B. Cyclophosphazene-Based Multi-Site Coordination Ligands. Coord. Chem. Rev. 2007, 251, 1045–1054. DOI: 10.1016/j.ccr.2006.07.005.
  • (a) Gleria, M.; De Jaeger, R. Aspects of Phosphazene Research. J. Inorg. Organomet. Polym. Mater., 2001, 11, 1–45. (b) Allcock, H. R. Chemistry and Applications of Polyphosphazenes; Wiley-Interscience: Hoboken, NJ, 2003. (c) Gleria, M.; De Jaeger, R. Eds. Synthesis and Characterization of Polyphosphazenes (Vol. I), Applicative Aspects of Polyphosphazenes (Vol. II), and Applicative Aspects of Cyclophosphazenes (Vol. III); Nova Science Publishers, Inc.: New York, 2004. DOI: 10.1023/A:1013276518701.
  • Allen, C. W. Regio- and Stereochemical Control in Substitution Reactions of Cyclophosphazenes. Chem. Rev. 1991, 91, 119–135. DOI: 10.1021/cr00002a002.
  • (a) Mutlu Balcı, C. The Directing Effect of Mono Primary and Secondary Amine Group Substituted Cyclotriphosphazenes on the Reaction of the Disodium Salt of Tetraethylene Glycol Inorg. Chim. Acta, 2021, 519, 120262. DOI: 10.1016/j.ica.2021.120262. (b) Beşli, S.; Mutlu Balcı, C.; Köseoğlu, C.; Palabıyık, D.; Allen, C. W. Synthesis and Characterization of the First Geminal Dibenzylaminocyclotriphosphazene Derivatives. Inorg. Chim. Acta, 2019, 492, 23–31. DOI: 10.1016/j.ica.2019.04.022. (c) Palabıyık, D.; Mutlu Balcı, C.; Beşli, S. The Role of the Substituted Group on Competative Formation of Ansa and Spiro Isomers. Inorg. Chim. Acta, 2019, 487C, 15–23. DOI: 10.1016/j.ica.2018.11.047.
  • (a) Beşli, S.; Mutlu Balcı, C.; Doğan, S.; Allen, C. W. Regiochemical Control in the Substitution Reactions of Cyclophosphazene Derivatives with Secondary Amines. Inorg. Chem., 2018, 57, 12066–12077. DOI: 10.1021/acs.inorgchem.8b01620. (b) Beşli, S.; Doğan, S.; Mutlu Balcı, C.; Yuksel, F. The reaction of N,N-Spiro Bridged Octachlorobis (Cyclotriphosphazene) with 1,3-Propanediol: Comparison with 1,2-Ethanediol. Polyhedron, 2017, 122, 61–70. DOI: 10.1016/j.poly.2016.10.040. (c) Davarcı. D.; Beşli, S.; Yuksel, F. Reactions of Cyclotriphosphazene with 1,6-Diaminohexane and 1,8-Diaminooctane: Mono-Ansa, Double and Triple-Bridged Derivatives. Polyhedron, 2014, 68, 10–16. DOI: 10.1016/j.poly.2013.10.012. (d) Beşli, S.; Coles, S. J.; Coles, L. S.; Davies, D. B.; Kılıç, A. Investigation of a Spiro to Ansa Rearrangement with Di-Functional Alcohols in Cyclotriphosphazene Derivative. Polyhedron, 2012, 43, 176–184. DOI: 10.1016/j.poly.2012.06.014. (e) Beşli, S.; Coles, S. J.; Davies, D. B.; Kılıç, A.; Okutan, E.; Shaw, R. A.; Tanrıverdi, E.; Yenilmez Çiftçi, G. A cis-Directing Effect Towards Diols by an Exocyclic P-NHR Moiety İncyclotriphosphazenes. Inorg. Chem. Commun., 2009, 12, 773–777. DOI: 10.1016/j.inoche.2009.06.014.
  • Cheng, J.; Wang, J.; Yang, S.; Zhang, Q.; Hu, Y.; Ding, G.; Huo, S. Aminobenzothiazole-Substituted Cyclotriphosphazene Derivative as Reactive Flame Retardant for Epoxy Resin. React. Funct. Polym. 2020, 146, 104412. DOI: 10.1016/j.reactfunctpolym.2019.104412.
  • Öztürk, E.; Okumuş, A.; Kılıç, Z.; Kılıç, A.; Kayalak, H.; Açık, L.; Aytuna Çerçi, N.; Türk, M.; Hökelek, T. Phosphorus-Nitrogen Compounds. Part 44. The Syntheses of N,N-Spiro Bridged Cyclotriphosphazene Derivatives with (4-Fluorobenzyl) Pendant Arms: Structural and Stereogenic Properties, DNA İnteractions, Antimicrobial and Cytotoxic Activities. Inorg. Chim. Acta 2019, 486, 172–184. DOI: 10.1016/j.ica.2018.10.028.
  • (a) Başterzi, N. S.; Bilge Koçak, S.; Okumuş, A.; Kılıç, Z.; Hökelek, T.; Çelik, Ö.; Türk, M.; Ko,ç L. Y.; Açık, L.; Aydın, B.; Dal, H. Syntheses, Structural Characterization and Biological Activities of Spiro-Ansa-Spirocyclotriphosphazenes. New J. Chem., 2015, 39, 8825–8839. DOI: 10.1039/C5NJ01530H. (b) Andrianov, A. K. Ed. Polyphosphazenes for Biomedical Applications; John Wiley & Sons, Inc.: Hoboken, NJ, 2009. (c) Wang, L.; Yang, Y.-X.; Shi, X.; Mignani, S.; Caminade, A.-M.; Majoral, J.-P. Cyclotriphosphazene Core-Based Dendrimers for Biomedical Applications: An Update on Recent Advances. J. Mater. Chem. B 2018, 6, 884–895. DOI: 10.1039/C7TB03081A
  • Klein, R. J.; Welna, D. T.; Weikel, A. L.; Allcock, H. R.; Runt, J. Counterion Effects on İon Mobility and Mobile İon Concentration of Doped Polyphosphazene and Polyphosphazene İonomers. Macromolecules 2007, 40, 3990–3995. DOI: 10.1021/ma070357o.
  • (a) Jimenez, J.; Pintre, I.; Gascon, E.; Sanchez-Somolinos, C.; Alcala, R.; Cavero, E.; Serrano, J. L.; Oriol, L. Photoresponsive Liquid-Crystalline Dendrimers Based on a Cyclotriphosphazene Core. Macromol. Chem. Phys., 2014, 215, 1551–1562. doi:10.1002/macp.201400190. (b) Barberá, J.; Bardají, M.; Jiménez, J.; Laguna, A.; Martinez, M. P.; Oriol, L.; Serrano, J. L.; Zaragozano, I. Columnar Mesomorphic Organizations in Cyclotriphosphazenes. J. Am. Chem. Soc. 2005, 127, 8994–9002. DOI: 10.1021/ja051042w. (c) Jiménez, J.; Sanz, J.A.; Serrano, J.L.; Barberá, J.; Oriol, L. Cyclotriphosphazenes as Scaffolds for the Synthesis of Metallomesogens, Inorg. Chem. 2020, 59, 4842–4857. DOI: 10.1021/acs.inorgchem.0c00124.
  • Bolink, H. J.; Santamaria, S. G.; Sudhakar, S.; Zhen, C.; Sellinger, A. Solution Processable Phosphorescent Dendrimers Based on Cyclic Phosphazenes for Use in Organic Light Emitting Diodes (OLEDs). Chem. Commun. 2008, 5, 618–620. DOI: 10.1039/B715239F.
  • Barboiu, M.; Guran, C.; Jitaru, I.; Cimpoesu, M.; Supuran, C. T. Complexes with Biologically Active Ligands. Part 7 Synthesis and Fungitoxic Activity of Metal Complexes Containing 1,3,5-tris-(8-Hydroxyquinolino)- Trichlorocyclo-Triphosphazatriene. Met. Based Drugs. 1996, 3, 233–240. DOI: 10.1155/MBD.1996.233.
  • (a) Mutlu Balcı, C.; Beşli, S. The Synthesis and Thermal Properties of Fluorodioxy-Substituted N,N-Spiro Bridged Cyclotriphosphazenes. Polyhedron, 2017, 126, 49–59. DOI: 10.1016/j.poly.2017.01.014. (b) Bertani, R.; Ghedini, E.; Gleria, M.; Liantonio, R.; Marras, G.; Metrangolo, P.; Meyer, F.; Pilati, T.; Restani, G. Cyclotriphosphazene [N3P3(2,2′-Dioxybiphenyl)2-(4-Pyridinoxy)2] and Its Halogen Bonded Complex with 1,4-Diiodotetrafluorobenzene, CrystEngComm, 2005, 83, 7, 511–513. DOI: 10.1039/B507263H.
  • (a) Yenilmez Çiftçi, G.; Şenkuytu, E.; Durmuş, M.; Yuksel, F.; Kılıç, A. Structural and Fluorescence Properties of 2-Naphthylamine Substituted Cyclotriphosphazenes. Inorg. Chim. Acta, 2014, 423, 489–495. (b) Ainscough, E.W.; Brodie, A. M.; Chaplin, A.B.; Derwahl, A.; Harrison, J. A.; Otter, C. A. Conformational Flexibility in 2,2′-Dioxybiphenyl-Chloro-Cyclotetraphosphazenes and Its Relevance to Polyphosphazene Analogues, Inorg. Chem., 2007, 46, 7, 2575–2583. DOI: 10.1021/ic062141t. (c) Amato, M.E.; Carriedo G. A.; Alonso, F.J.G.; Garcia-Alvarez, J.L.; Lombardo, G. M.; Pappalardo, G. C. Stereochemistry in Solution of Spiro-2,2′-Dioxybiphenyl-Cyclotriphosphazenes: An NMR Spectroscopic Study Combined with Molecular Dynamics Simulations. J. Chem. Soc. Dalt. Trans., 2002, 15, 3047–3053. DOI: 10.1039/b202083c. (d) Jiménez, J.; Laguna, A.; Benouazzane, M.; Sanz, J.A.; Díaz, C.; Valenzuela, M.L.; Jones. P.G. Metallocyclo- and Polyphosphazenes Containing Gold or Silver: Thermolytic Transformation into Nanostructured Materials. Chem. Eur. J. 2009, 15, 13509–13520. DOI: 10.1002/chem.200902180. (e) Kumar, D.; Gupta, A. D. Aromatic Cyclolinear Phosphazene Polyimides Based on a Novel bis-Spiro-Substituted Cyclotriphosphazene Diamine. Macromolecules 1995, 28, 632–6329. DOI: 10.1016/j.ica.2014.09.001.
  • Mutlu Balcı, C.; Tümay, S. O.; Beşli, S. ESIPT On/off Switching and Crystallization-Enhanced Emission Properties of New Design Phenol-Pyrazole Modified Cyclotriphosphazenes. New J. Chem. 2021, 45, 8492–8505. DOI: 10.1039/D1NJ00894C.
  • Doğan, S.; Tümay, S. O.; Mutlu Balcı, C.; Yeşilot, S.; Beşli, S. Synthesis of New Cyclotriphosphazene Derivatives Bearing Schiff Bases and Their Thermal and Absorbance Properties. Turk. J. Chem. 2020, 44, 31–47. DOI: 10.3906/kim-1905-60.
  • Tümay, S. O.; Yeşilot, S. Highly Selective “Turn-on” Fluorescence Determination of Mercury İon in Food and Environmental Samples Through Novel Anthracene and Pyrene Appended Schiff Bases. J. Photochem. Photobiol. A: Chem. 2021, 407, 113093. DOI: 10.1016/j.jphotochem.2020.113093.
  • Correia, F. C.; Santos, T. C. F.; Garcia, J. R.; Peres, L. O.; Wang, S. H. Synthesis and Characterization of a New Semiconductor Oligomer Having Quinoline and Fluorene Units. J. Braz. Chem. Soc. 2015, 26, 84–91. DOI: 10.5935/0103-5053.20140217.
  • SADABS, Bruker AXS Inc., Madison, Wisconsin, USA. 2005.
  • APEX2 (Version 2011.4-1). Bruker AXS Inc., Madison, Wisconsin, USA. 2008.
  • Sheldrick, G. M. SHELXT – İntegrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. A Found Adv. 2015, 71, 3–8. DOI: 10.1107/S2053273314026370.
  • Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. DOI: 10.1107/S2053229614024218.
  • Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. DOI: 10.1107/S0021889808042726.
  • Spek, A. L. Structure Validation in Chemical Vrystallography. Acta Crystallogr. D Biol. Crystallogr. 2009, 65, 148–155. DOI: 10.1107/S090744490804362X.
  • Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. New Features for the Visualization and Investigation of Crystal Structures. J. Appl. Crystallogr. 2008, 41, 466–470. DOI: 10.1107/S0021889807067908.
  • Brandenburg, K. DIAMOND 3.1 for Windows; Crystal Impact GbR; Bonn: Germany, 2006.
  • Carriedo, G. A.; Catuxo, L. F.; Garcia Alonso, F. J.; Gomez-Elipe, P.; Gonzalez, P. A. Preparation of a New Type of Phosphazene High Polymers Containing 2,2‘-Dioxybiphenyl Groups. Macromolecules 1996, 29, 5320–5325. DOI: 10.1021/ma951830d.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.