157
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Two-step synthesized sulfonic acid functionalized imidazolium thiocyanate solid acid catalyst for thiocyanation of various electron rich arenes by metal-free method in water

ORCID Icon, & ORCID Icon
Pages 1016-1025 | Received 16 Nov 2021, Accepted 09 Mar 2022, Published online: 17 Mar 2022

References

  • (a) Fresner, J. Cleaner Production as a Means for Effective Environmental Management. J. Cleaner Prod. 1998, 6, 171–179. (b) Abdussalam-Mohammed, W.; Qasem Ali, A.; Errayes, A. O. Green Chemistry: Principles, Applications, and Disadvantages. Chem. Methodol. 2020, 4, 408–423. DOI: 10.33945/SAMI/CHEMM.2020.4.4. (c) Tanaka, K.; Toka, F. Solvent-Free Organic Synthesis. Chem. Rev. 2000, 100, 1025–1074. DOI: 10.1021/cr940089p. (d) Kamali, F.; Shirini, F. Effective and Convenient Synthesis of 2-Amino-4H-Chromenes Promoted by Melamine as a Recyclable Organocatalyst. Eurasian Chem. Commun. 2021, 3, 278–290. DOI: 10.22034/ecc.2021.272326.1136. (e) Mehdizadeh, S.; Ghasemi, N.; Ramezani, M.; Mahanpoor, K. Biosynthesis of Silver Nanoparticles Using Malva Sylvestris Flower Extract and Its Antibacterial and Catalytic Activity. Chem. Methodol. 2021, 5, 356–366. DOI: 10.22034/chemm.2021.132490. DOI: 10.1016/S0959-6526(98)00002-X.
  • (a) Taherkhani, B.; Ramazani, A.; Sajjadifar, S.; Aghahosseini, H.; Rezaei, A.; Rezayati, S. Grinding Synthesis of 2-Amino-4H-Benzo[b]Pyran Derivatives Catalyzed by Highly Efficient GPTMS/Guanidine Protected Magnetic Nanoparticles. ChemistrySelect, 2021, 6, 11362–11374. DOI: 10.1002/slct.202102931. (b) Baghernejad, B.; Zareie, A. Pseudo-Three Component Reaction of Indole with Benzaldehyde Derivatives for the Preparation of Bis(Indolyl)Methanes in the Presence of nano-CuO-CeO2. Asian J. Green Chem. 2021, 4, 343–350. DOI: 10.22034/ajgc.2021.288567.1304. (c) Karimi, A. H.; Hekmat-Ara, A.; Zare, A.; Barzegar, M.; Khanivar, R.; Sadeghi-Takallo, M. Producing, Characterizing and Utilizing a Novel Magnetic Catalyst to Promote Construction of N,N′-Alkylidene Bisamides. Eurasian Chem. Commun. 2021, 3, 360–368. DOI: 10.22034/ecc.2021.277415.1149. (d) Irannejad-Gheshlaghchaei, N.; Zare, A.; Banaei, A.; Kaveh, H.; Varavi, N. N,N,N',N'-Tetramethyl -N,N'-bis(Sulfo)Ethane-1,2-Diaminium Mesylate as a Highly Effective and Dual-Functional Catalyst for the Synthesis of 1-Thioamidoalkyl-2-Naphthols. Chem. Methodol. 2020, 4, 400–407. DOI: 10.33945/SAMI/CHEMM.2020.4.3. (e) Singha, R.; Brahman, D.; Sinha, B.; Ghosh, P. Pseudo-Three Component Reaction of Indole with Benzaldehyde Derivatives for the Preparation of Bis(Indolyl)Methanes in the Presence of nano-CuO-CeO2. Asian J. Green Chem. 2021, 4, 343–350. DOI: 10.22034/ajgc.2021.288567.1304. (f) Sajjadifar, S.; Amini, I.; Habibzadeh, S.; Mansouri, G.; Ebadi, E. Acidic Ionic Liquid Based Silica-Coated Fe3O4 Nanoparticles as a New Nanomagnetic Catalyst for Preparation of Aryl and Heteroaryl Thiocyanates. Chem. Methodol. 2020, 4, 623–634. DOI: 10.22034/chemm.2020.108149. (g) Mohamadpour, F.; Feilizadeh, M. Salicylic Acid as a Bio-Based and Natural Brønsted Acid Catalyst Promoted Green and Solvent-Free Synthesis of Various Xanthene Derivatives. Chem. Methodol. 2020, 4, 647–659. DOI: 10.22034/chemm.2020.109841. (h) Albadi, J.; Samimi, H.; Momeni, A. R. Alumina-Supported Cobalt Nanoparticles Efficiently Catalyzed the Synthesis of Chromene Derivatives under Solvent-Free Condition. Chem. Methodol. 2020, 4, 565–571. DOI: 10.22034/chemm.2020.107071. (i) Raoufi, F.; Aghaei, H.; Ghaedi, M. Cu-Metformin Grafted on Multi Walled Carbon Nanotubes: Preparation and Investigation of Catalytic Activity. Eurasian Chem. Commun. 2020, 2, 226–233. DOI: 10.33945/SAMI/ECC.2020.2.8.
  • (a) Lindström, U. M. Stereoselective Organic Reactions in Water. Chem. Rev. 2002, 102, 2751–2772. DOI: 10.1021/cr010122p. (b) Narayan, A. S.; Muldoon, J.; Finn, M. G.; Fokin, V. V.; Kolb, H. C.; Sharpless, K. B. On Water: Unique Reactivity of Organic Compounds in Aqueous Suspension. Angew. Chem. Int. Ed. 2005, 44, 3275–3279. DOI: 10.1002/anie.200462883
  • (a) Hattori, H. Solid Acid Catalysts: Roles in Chemical Industries and New Concepts. Top Catal. 2010, 53, 432–438. (b) Kiss, A. A.; Dimian, A. C.; Rothenberg, G. Solid Acid Catalysts for Biodiesel Production -Towards Sustainable Energy. Adv. Synthesis Catal. 2006, 348, 75–81. DOI:10.1002/adsc.200505160. DOI: 10.1007/s11244-010-9469-9. (c) Kamali, F.; Shirini, F. Effective and Convenient Synthesis of 2-Amino-4H-Chromenes Promoted by Melamine as a Recyclable Organocatalyst. Eurasian Chem. Commun. 2021, 3, 278–290. DOI:10.22034/ecc.2021.272326.1136. (d) Khazaei, A.; Gohari-Ghalil, F.; Tavasoli, M.; Rezaei-Gohar, M.; Moosavi-Zare, A. R. Fe3O4 Bonded Pyridinium-3-Carboxylic acid-N-Sulfonic Acid Chloride as an Efficient Catalyst for the Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones. Chem. Methodol. 2020, 4, 543–553. DOI: 10.22034/chemm.2020.106433. (e) Salih, A. R.; Al-Messri, Z. A. K. Synthesis of Pyranopyrazole and Pyranopyrimidine Derivatives Using Magnesium Oxide Nanoparticles and Evaluation as Corrosion Inhibitors for Lubricants. Eurasian Chem. Commun. 2021, 3, 533–541. DOI: 10.22034/ecc.2021.291144.1189. (f) Mostaghni, F.; Taat, F. CoFe2O4 as Green and Efficient Catalyst for Synthesis of Multisubstituted Imidazoles. Eurasian Chem. Commun. 2020, 2, 427–432. DOI: 10.33945/SAMI/ECC.2020.4.1. (g) Baghernejad, B.; Rostami Harzevili, M. Nano-Cerium Oxide/Aluminum Oxide: An Efficient and Useful Catalyst for the Synthesis of Tetrahydro[a]Xanthenes-11-One Derivatives. Chem. Methodol. 2021, 5, 90–95. DOI: 10.22034/chemm.2021.11964. (h) Hussien, H. A. K.; Al-Messri, Z. A. K. Synthesis, Characterization and Evaluation of 5-Alkylidene Meldrum’s Acid Derivatives as Multifunction Lubricating Oil Additives. Eurasian Chem. Commun. 2021, 3, 598–605. DOI: 10.22034/ecc.2021.290518.1186
  • Tanabe, K.; Hölderich, W. F. Industrial Application of Solid Acid–Base Catalysts. Appl. Catal. A 1999, 181, 399–434. DOI: 10.1016/S0926-860X(98)00397-4.
  • (a) Dalpozzo, R.; Bartoli, G.; Sambri, L.; Melchiorre, P. Perchloric Acid and Its Salts: Very Powerful Catalysts in Organic Chemistry. Chem. Rev. 2010, 74, 5967–3551. DOI: 10.1021/cr9003488. (b) Chakraborti, A. K.; Singh, B.; Chankeshwara, S. V.; Patel, A. R. Protic Acid Immobilized on Solid Support as an Extremely Efficient Recyclable Catalyst System for a Direct and Atom Economical Esterification of Carboxylic Acids with Alcohols. J. Org. Chem. 2009, 74, 5967–5974. DOI: 10.1021/jo900614s. (c) Sharma, G.; Kumar, R.; Chakraborti, A. K. Fluoroboric Acid Adsorbed on Silica-Gel (HBF4–SiO2) as a New, Highly Efficient and Reusable Heterogeneous Catalyst for Thia-Michael Addition to α,β Unsaturated Carbonyl Compounds. Tetrahedron Lett. 2008, 49, 4272–4275. DOI:10.1016/j.tetlet.2008.04.144
  • Grieco, P. A.; Yokoyama, Y.; Williams, E. Aryl Selenocyanates and Aryl Thiocyanates: Reagents for the Preparation of Activated Esters. J. Org. Chem. 1978, 43, 1283–1285. DOI: 10.1021/jo00400a070.
  • Byeun, A.; Baek, K.; Han, M. S.; Lee, S. Palladium-Catalyzed C–S Bond Formation by Using N-Amido Imidazolium Salts as Ligands. Tetrahedron Lett. 2013, 54, 6712–6715. DOI: 10.1016/j.tetlet.2013.09.074.
  • Mackinnon, D. L.; Farrel, P. A. The Effect of 2-(Thiocyanomethylthio)Benzothiazole on Juvenile Coho Salmon (OncorhynchusKisutch): Sublethal Toxicity Testing. Environ. Toxicol. Chem. 1992, 11, 1541–1548.[1541:teotoj]2.0.co;2 DOI: 10.1897/1552-8618(1992)11.
  • Pezzella, A.; Palma, A.; Iadonisi, A.; Napolitano, A.; d’Ischia, M. The First Entry to 5, 6-Dihydroxy-3-Mercaptoindole, 5-Hydroxy-3-Mercaptoindole and Their 2-Carbomethoxy Derivatives by a Mild Thiocyanation/Reduction Methodology. Tetrahedron Lett. 2007, 48, 3883–3886. DOI: 10.1016/j.tetlet.2007.03.141.
  • (a) Zelesko, M. J.; McComsey, D. F.; Hageman. W. E.; Nortey, S. O.; Baker, C. A.; Maryanoff, B. E. Cardiac-slowing amidines containing the 3-thioindone group. Potential antianginal agents. J. Med. Chem. 1983, 26, 230–237. DOI: 10.1021/jm00356a021. (b) Unangst, P. C.; Connor, D. T.; Stabler, S. R.; Weikert, R. J.; Carethers, M. E.; Kennedy, J. A.; Thueson, D. O.; Chestnut, J. C.; Adolphson, R. L.; Conroy, M. C. Novel Indolecarboxamidotetrazoles as Potential Antiallergy Agents. J. Med. Chem. 1989, 32, 1360–1366. DOI: 10.1021/jm00126a036
  • Lee, Y. T.; Choi, S. Y.; Chung, Y. K. Microwave-Assisted Palladium-Catalyzed Regioselective Cyanothiolation of Alkynes with Thiocyanates. Tetrahedron Lett. 2007, 48, 5673–5677. DOI: 10.1016/j.tetlet.2007.06.041.
  • Nguyen, T.; Rubinstein, M.; Wakselman, C. Reaction of Perfluoroalkyl Carbanions with Thiocyanates. Synthesis of Fluorinated Sulfides and Sulfenyl Chlorides. J. Org. Chem. 1981, 46, 1938–1940. DOI: 10.1021/jo00322a047.
  • Matheis, C.; Wang, M.; Krause, T.; L. G. Metal-Free, G. Trifluoromethylthiolation of Alkyl Electrophiles via a Cascade of Thiocyanation and Nucleophilic Cyanide–CF3 Substitution. Synlett 2015, 26, 1628–1632. DOI: 10.1055/s-0034-1378702.
  • Riemschneider, R.; Wojahn, F.; Orlick, G. Thiocarbamates. III.1 Aryl Thiocarbamates from Aryl Thiocyanates. J. Am. Chem. Soc. 1951, 73, 5905–5907. DOI: 10.1021/ja01156a552.
  • Grant, M. S.; Snyder, H. R. Thiocyanation of Indole. Some Reactions of 3-Thiocyanoindole. J. Am. Chem. Soc. 1960, 82, 2742–2744. DOI: 10.1021/ja01496a023.
  • Zhang, Z.; Liebeskind, L. S. Palladium-Catalyzed, Copper(I)-Mediated Coupling of Boronic Acids and Benzylthiocyanate. A Cyanide-Free Cyanation of Boronic Acids. Org. Lett. 2006, 8, 4331–4333. DOI: 10.1021/ol061741t.
  • Fortes, M. P.; Bassaco, M. M.; Kaufman, T. S.; Silveira, C. C. A Convenient Eco-Friendly System for the Synthesis of 5-Sulfenyl Tetrazole Derivatives of Indoles and Pyrroles Employing CeCl3·7H2O in PEG-400. RSC Adv. 2014, 4, 34519–34530. DOI: 10.1039/C4RA05625F.
  • Yadav, J.; Reddy, B. S.; Chandrakanth, D.; Hara, G. A. V. Indium-Mediated Allylation of Heteroaryl, Benzyl, and Cinnamyl Thiocyanates: A Novel Route for 3-(Allylsulfanyl)-1H-Indoles. Chem. Lett. 2008, 37, 1082–1083. DOI: 10.1246/cl.2008.1082.
  • Prabhu, K. R.; Ramesha, A.; Chandrasekaran, S. Reductive Dimerization of Organic Thiocyanates to Disulfides Mediated by Tetrathiomolybdate. J. Org. Chem. 1995, 60, 7142–7143. DOI: 10.1021/jo00127a017.
  • Wu, J.; Wu, G. L.; Wu, L. M. Heterogeneous and Catalytic Thiocyanation of Aromatic Compounds in Aqueous Media. Synth. Commun. 2008, 38, 2367–23739. DOI: 10.1080/10426507.2011.610846.
  • (a) He, D.; Yao, J.; Ma, B.; Wei, J.; Hao, G.; Tuo, X.; Guo, S.; Fu, Z.; Cai, H. An Electrochemical Method for Deborylative Seleno/Thiocyanation of Arylboronic Acids under Catalyst- and Oxidant-Free Conditions.Green Chem. 2020, 22, 1559–1564. (b) Yang, Z.; Wang, Y.; Hu, L.; Yu, J.; Li, A.; Li, L.; Yang, T.; Zhou, C. Electrochemically Induced Thiocyanation of Enaminones: Synthesis of Functionalized Alkenes and Chromones. Synthesis 2020, 52, 711–718. DOI: 10.1055/s-0039-1691486. DOI: 10.1039/C9GC03797G.
  • Yadav, J. S.; Reddy, B. V. S.; Shubashree, S.; Sadashiv, K. Iodine/MeOH: A Novel and Efficient Reagent System for Thiocyanation of Aromatics and Heteroaromatics. Tetrahedron Lett. 2004, 45, 2951–2954. DOI: 10.1016/j.tetlet.2004.02.073.
  • Wu, G.; Liu, Q.; Shen, Y.; Wu, W.; Wu, L. Regioselective Thiocyanation of Aromatic and Heteroaromatic Compounds Using Ammonium Thiocyanate and Oxone. Tetrahedron Lett. 2005, 46, 5831–5834. DOI: 10.1016/j.tetlet.2005.06.132.
  • Mahajan, U. S.; Krishnacharya, G. A. Facile Method for Thiocyanation of Activated Arenes Using Iodic Acid in Combination with Ammonium Thiocyanate. Synth. Commun. 2009, 39, 2674–2682. DOI: 10.1080/00397910802663402.
  • Zhang, P.; Yin, Y.; Wang, Z.; Yu, C.; Zhu, Y.; Yan, D.; Liu, W.; Mai, Y. Porphyrin-Based Conjugated Microporous Polymer Tubes: Template-Free Synthesis and a Photocatalyst for Visible-Light-Driven Thiocyanation of Anilines. Macromolecules 2021, 54, 3543–3553. DOI: 10.1021/acs.macromol.1c00190.
  • Kumar, A.; Ahamd, P.; Maurya, R. A. Direct α-Thiocyanation of Carbonyl and β-Dicarbonyl Compounds Using Potassium Peroxydisulfate–Copper (II). Tetrahedron Lett. 2007, 48, 1399–1401. DOI: 10.1016/j.tetlet.2006.12.103.
  • Toste, F. D.; Stefano, V. D.; Still, I. V. J. A Versatile Procedure for the Preparation of Aryl Thiocyanates Using N-Thiocyanatosuccinimide (NTS). Synth. Commun. 1995, 25, 1277–1286. DOI: 10.1080/00397919508012691.
  • Yadav, J. S.; Reddy, B. V. S.; Reddy, Y. J. 1-Chloromethyl-4-Fluoro-1,4-Diazoniabicyclo[2,2,2]Octane Bis(Tetrafluoroborate)as Novel and Versatile Reagent for the Rapid Thiocyanation of Indoles,Azain Dole, and Carbazole. Chem. Lett. 2008, 37, 652–658. DOI: 10.1246/cl.2008.652.
  • Mete, T. B.; Khopade, T. M.; Bhat, R. G. Transition-Metal-Free Regioselective Thiocyanation of Phenols, Anilines and Heterocycles. Tetrahedron Lett. 2017, 58, 415–418. DOI: 10.1016/j.tetlet.2016.12.043.
  • Pan, X. Q.; Lei, M. Y.; Zou, J. P.; Zhang, W. Mn(OAc)3-Promoted Regioselective Free Radical Thiocyanation of Indoles and Anilines. Tetrahedron Lett. 2009, 50, 347–349. DOI: 10.1016/j.tetlet.2008.11.007.
  • Karimi Zarchi, M. A.; Banihashemi, R. Thiocyanation of Aromatic and Heteroaromatic Compounds Using Polymer-Supported Thiocyanation as the Versatile Reagent and Ceric Ammoniumnitrate as the Versatile Single-Electron Oxidant. J. Sulfur Chem. 2016, 37, 282–295. DOI: 10.1080/17415993.2015.1137919.
  • Qumruddeen, Yadav, A.; Kant, R.; Bhushan Tripathi, C. Lewis Base/Brønsted Acid Cocatalysis for Thiocyanation of Amides and Thioamides. J. Org. Chem. 2020, 85, 2814–2822. DOI: 10.1021/acs.joc.9b03275.
  • de Oliveira Lima Filho, E.; Malvestiti, I. Mechanochemical Thiocyanation of Aryl Compounds via C-H Functionalization. ACS Omega 2020, 5, 33329–33339. DOI: 10.1021/acsomega.0c05131.
  • Dey, A.; Hajra, A. Potassium Persulfate-Mediated Thiocyanation of 2H-Indazole under Iron-Catalysis. Adv. Synth. Catal. 2019, 361, 842–849. DOI: 10.1002/adsc.201801232.
  • Iranpoor, N.; Firouzabadi, H.; Khalili, D.; Shahin, R. A New Application for Diethyl Azodicarboxylate: efficient and Regioselective Thiocyanation of Aromatics Amines. Tetrahedron Lett. 2010, 51, 3508–3510. DOI: 10.1016/j.tetlet.2010.04.096.
  • Wang, C.; Wang, Z.; Wang, L.; Chen, Q.; He, M. Catalytic Thiourea Promoted Electrophilic Thiocyanation of Indoles and Aromatic Amines with NCS/NH4SCN. Chin. J. Chem. 2016, 34, 1081–1085. DOI: 10.1002/cjoc.201600344.
  • Koohgard, M.; Hosseinpour, Z.; Sarvestani, A. M.; Hosseini-Sarvari, M. ARS–TiO2 Photocatalyzed Direct Functionalization of sp2 C–H Bonds toward Thiocyanation and Cyclization Reactions under Visible Light. Catal. Sci. Technol. 2020, 10, 1401–1407. DOI: 10.1039/C9CY02268F.
  • Rezayati, S.; Kalantari, F.; Ramazani, A.; Ezzatzadeh, E. Isoquinolinium-N-Sulfonic Acid Thiocyanate/H2O2 as Efficient Reagent for Thiocyanation of N-Bearing (Hetero)Aromatic Compounds. J. Sulfur Chem. 2021, 42, 575–590. DOI: 10.1080/17415993.2021.1929230.
  • Khazaei, A.; Zolfigol, M. A.; Mokhlesi, M.; Pirveysian, M. Citric Acid as a Trifunctional Organocatalyst for Thiocyanation of Aromatic and Heteroaromatic Compounds in Aqueous Media. Can. J. Chem. 2012, 90, 427–432. DOI: 10.1139/v2012-013.
  • Sajjadifar, S.; Zolfigol, M. A.; Ghorbani-Choghamarani, A.; Banaei, A. R.; Karimian, S.; S. Phthalic, M. Acid as a di-Functional Organocatalyst for the Regioselective Thiocyanation of Aromatic Compounds. Sci. Iran. C 2014, 21, 200–2011.
  • Sajjadifar, S.; Hosseinzadeh, H.; Ahmadaghaee, S.; Rezaee Nezhad, E.; Karimian, S. 1-Methyl, 3-(2-(Sulfooxy)Ethyl)-1H-Imidazol-3-Ium Thiocyanate as a Novel, Green, and Efficient BrØNsted Acidic Ionic Liquid-Promoted Regioselective Thiocyanation of Aromatic and Heteroaromatic Compounds at Room Temperature. Phosphorus, Sulfur, Silicon Relat. Elem. 2014, 189, 333–342. DOI: 10.1080/10426507.2013.818996.
  • Rezayati, S.; Sheikholeslami-Farahani, F.; Hossaini, Z.; Hajinasiri, R.; Abad, S. Afshari Sharif Abad, S. Regioselctive Thiocyanation of Aromatic and Heteroaromatic Compounds Using a Novel Brønsted Acidic Ionic Liquid. CCHTS 2016, 19, 720–727. DOI: 10.2174/1386207319666160709191851.
  • Hosseini-Sarvari, M.; Hosseinpoura, Z.; Koohgard, M. Visible light thiocyanation of N-bearing aromatic and heteroaromatic compounds using Ag/TiO2 nanotube photocatalyst. New J. Chem. 2018, 42, 19237–19244. DOI: 10.1039/C8NJ03128B.
  • Rezayati, S.; Kalantari, F.; Ramazani, A.; Sajjadifar, S.; Aghahosseini, H.; Rezaei, A. Proline-Cu Complex Based 1,3,5-Triazine Coated on Fe3O4 Magnetic Nanoparticles: A Nanocatalyst for the Knoevenagel Condensation of Aldehyde with Malononitrile. Inorg. Chem. 2022, 61, 992–1797. DOI: 10.1021/acsanm.1c03169.
  • Fan, W.; Yang, Q.; Xu, F.; Li, P. A Visible-Light-Promoted Aerobic Metal-Free C-3 Thiocyanation of Indoles. J. Org. Chem. 2014, 79, 10588–10592. DOI: 10.1021/jo5015799.
  • Nikoofar, K.; Gorji, S. Determination of the Promoting Effect of Nano SiO2 and H3PO4@Nano SiO2 in the Thiocyanation of N-Containing Aromatic Compounds under Solvent-Free Conditions. J. Sulfur Chem. 2015, 36, 178–186. DOI: 10.1080/17415993.2015.1004066.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.