270
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Mechanosynthesis of phosphonocinnamic esters through solvent-free Horner-Wadsworth-Emmons reaction

, , , , &
Pages 1045-1054 | Received 08 Dec 2021, Accepted 12 Mar 2022, Published online: 04 Apr 2022

References

  • Parmar, R. G.; Brown, C.; Matsuda, S.; Willoughby, J.; Theile, C.; Charissé, K.; Foster, D.; Zlatev, I.; Jadhav, V.; Maier, M.; et al. Facile Synthesis, Geometry, and 2'-Substituent-Dependent in Vivo Activity of 5'-(E)- and 5'-(Z)-Vinylphosphonate-Modified siRNA Conjugates . J. Med. Chem. 2018, 61, 734–744. DOI: 10.1021/acs.jmedchem.7b01147.
  • Manda, S.; Wani, A.; Bharate, S. S.; Vishwakarma, R. A.; Kumar, A.; Bharate, S. B. Design, Synthesis and P-gp Induction Activity of Aryl Phosphonate Esters: Identification of Tetraethyl-2-Phenylethene-1, 1-Diyldiphosphonate as an Orally Bioavailable P-gp Inducer. Med. Chem. Commun. 2016, 7, 1910–1915. DOI: 10.1039/C6MD00300A.
  • Delomenede, M.; Bedos-Belval, F.; Duran, H.; Vindis, C.; Baltas, M.; Negre-Salvayre, A. Development of Novel Antiatherogenic Biaryls: design, Synthesis, and Reactivity. J. Med. Chem. 2008, 51, 3171–3181. DOI: 10.1021/jm7014793.
  • Lapeyre, C.; Delomenède, M.; Bedos-Belval, F.; Duran, H.; Nègre-Salvayre, A.; Baltas, M. Design, Synthesis, and Evaluation of Pharmacological Properties of Cinnamic Derivatives as Antiatherogenic Agents. J. Med. Chem. 2005, 48, 8115–8124. DOI: 10.1021/jm050454c.
  • Huang, T.; Wang, Q.; Kong, D.; Wu, M. Diastereoselective Catalyst-Free Construction of Isoxazolidine-Cis-Fused Phospha Dihydrocoumarins via an Intramolecular Nitrone–Vinylphosphonate Dipolar Cycloaddition. Tetrahedron Lett. 2019, 60, 150913. DOI: 10.1016/j.tetlet.2019.07.004.
  • Shen, L-L.; Ye, Y.; Luo, Y.; Liu, L-Z. Regioselective Cycloadditions of Phosphonyl Nitrile Oxides with Vinylphosphonate and Phosphaalkyne. Phosphorus Sulfur Silicon Relat. Elem. 2010, 185, 680–687. DOI: 10.1080/10426500902917651.
  • Ye, Y.; Ma, L-B.; Luo, Y.; Wang, W-H.; Liu, L-Z.; Zhao, Y-F. Regioselective Cycloadditions of β-Substituted Vinylphosphonate with Nitrile Oxides. Phosphorus Sulfur Silicon Relat. Elem. 2008, 184, 135–140. DOI: 10.1080/10426500802080717.
  • Qi, X.; Lee, S. H.; Kwon, J. Y.; Kim, Y.; Kim, S. J.; Lee, Y. S.; Yoon, J. Aminobromination of Unsaturated Phosphonates. J. Org. Chem. 2003, 68, 9140–9143. DOI: 10.1021/jo034535x.
  • Koldemir, U.; Braid, J. L.; Morgenstern, A.; Eberhart, M.; Collins, R. T.; Olson, D. C.; Sellinger, A. Molecular Design for Tuning Work Functions of Transparent Conducting Electrodes. J. Phys. Chem. Lett. 2015, 6, 2269–2276. DOI: 10.1021/acs.jpclett.5b00420.
  • Ogawa, T.; Usuki, N.; Ono, N. A New Synthesis of π-Electron Conjugated Phosphonates and Phosphonic Bis (Diethylamides) and Their SHG Activities. J. Chem. Soc, Perkin Trans. 1 1998, 2953–2958. DOI: 10.1039/a709082j.
  • Brunner, H.; de Courcy, N. L. C.; Genêt, J.-P. Heck Reactions Using Aryldiazonium Salts towards Phosphonic Derivatives. Synlett 2000, 2000, 201–204. DOI: 10.1055/s-2000-6482.
  • Thiery, E.; Abarbri, M. Suzuki and Stille Cross-Coupling Reactions from β-Iodovinylphosphonate: Stereoselective Access to Various Substituted Vinylphosphonates. Synthesis 2014, 46, 2757–2762. DOI: 10.1055/s-0034-1378360.
  • Yahyaoui, M.; Touil, S.; Samarat, A. An Efficient and Facile Access to Substituted 1E, 3E-Dienylphosphonates via Horner-Wadsworth-Emmons Olefination of α, β-Unsaturated Aldehydes with Tetraethyl Methylenebisphosphonate. Chem. Lett. 2018, 47, 729–731. DOI: 10.1246/cl.180149.
  • Abdou, W. M.; Khidre, R. E.; Shaddy, A. A. Synthesis of Tetrazoloquinoline‐Based Mono‐and Bisphosphonate Esters as Potent anti‐Inflammatory Agents. J. Hetercyclic. Chem. 2013, 50, 33–41. DOI: 10.1002/jhet.968.
  • Abdou, W. M.; Barghash, R. F.; Sediek, A. A. Design of New Arylamino-2-Ethane-1,1-Diyl- and Benzoxazole-2-Methylene-Bisphosphonates vs Cytotoxicity and Chronic Inflammation Diseases. From Hydrophobicity Prediction to Synthesis and Biological Evaluation . Eur. J. Med. Chem. 2012, 57, 362–372. DOI: 10.1016/j.ejmech.2012.09.032.
  • Xu, Y.; Flavin, M. T.; Xu, Z.-Q. Preparation of New Wittig Reagents and Their Application to the Synthesis of Alpha,Beta-Unsaturated Phosphonates. J. Org. Chem. 1996, 61, 7697–7701. DOI: 10.1021/jo9608275.
  • Aboujaoude, E. E.; Lietje, S.; Collignon, N.; Teulade, M.; Savignac, P. Conversion Directe “In Situ” Des Alkyl en Vinylphosphonates. Tetrahedron Lett 1985, 26, 4435–4438. DOI: 10.1016/S0040-4039(00)88923-6.
  • Krawczyk, H.; Albrecht, Ł. Knoevenagel Reaction of Diethylphosphonoacetic Acid: A Facile Route to Diethyl (E)-2-Arylvinylphosphonates. Synthesis 2005, 2005, 2887–2896. DOI: 10.1055/s-2005-918406.
  • Wang, L.; Yang, Z.; Zhu, H.; Liu, H.; Lv, S.; Xu, Y. TEMPO and Silver‐Mediated Intermolecular Phosphonylation of Alkenes: Stereoselective Synthesis of (E)‐Alkenylphosphonates. Eur. J. Org. Chem. 2019, 2019, 2138–2142. DOI: 10.1002/ejoc.201801678.
  • Gui, Q.; Hu, L.; Chen, X.; Liu, J.; Tan, Z. Stereoselective Synthesis of Vinylphosphonates and Phosphine Oxides via Silver-Catalyzed Phosphorylation of Styrenes. Chem Commun (Camb) 2015, 51, 13922–13924. DOI: 10.1039/c5cc04826e.
  • Tang, L.; Wen, L.; Sun, T.; Zhang, D.; Yang, Z.; Feng, C.; Wang, Z. Solvent‐Controlled Copper‐Catalyzed Radical Decarboxylative Coupling for Alkenyl C (sp2)− P Bond Formation. Asian J. Org. Chem. 2017, 6, 1683–1692. DOI: 10.1002/ajoc.201700434.
  • Gu, J.; Cai, C. Cu(i)/Fe(iii)-Catalyzed C-P Cross-Coupling of Styrenes with H-Phosphine Oxides: A Facile and Selective Synthesis of Alkenylphosphine Oxides and β-Ketophosphonates. Org. Biomol. Chem. 2017, 15, 4226–4230. DOI: 10.1039/c7ob00505a.
  • Yuan, J.-W.; Yang, L.-R.; Mao, P.; Qu, L.-B. Silver-Catalyzed Synthesis of 2-Arylvinylphosphonates by Cross-Coupling of β-Nitrostyrenes with H-Phosphites. RSC Adv. 2016, 6, 87058–87065. DOI: 10.1039/C6RA19002B.
  • Yang, F.; Zhou, Q.; Wang, H.; Tang, L. Copper-Catalyzed Cross-Dehydrogenative Phosphorylation of 2-Amino-1,4-Naphthoquinones with H-Phosphonates. Eur. J. Org. Chem. 2021, 2021, 5618–5622. DOI: 10.1002/ejoc.202100870.
  • Anastas, P.; Eghbali, N. Green Chemistry: principles and Practice. Chem. Soc. Rev. 2010, 39, 301–312. DOI: 10.1039/b918763b.
  • Do, J. L.; Friscic, T. Mechanochemistry: A Force of Synthesis. ACS Cent. Sci. 2017, 3, 13–19. DOI: 10.1021/acscentsci.6b00277.
  • Ramírez-Marroquín, O. A.; Manzano-Pérez, F.; López-Torres, A.; Hernández-López, A.; Cortés-Pacheco, A.; Reyes-González, M. A. First Mechanosynthesis of Piperlotines A, C, and Derivatives through Solvent-Free Horner-Wadsworth-Emmons Reaction. Synth. Commun. 2019, 49, 244–255. DOI: 10.1080/00397911.2018.1550204.
  • Ramírez-Marroquín, O. A.; Jiménez-Arellanes, M. A.; Luna-Herrera, J.; Olivares-Romero, J. L.; Bonilla-Landa, I.; Castro-Cerritos, K. V. Anti-Inflammatory Activity of Piperlotines. J. Mex. Chem. Soc. 2020, 64, 181–190. DOI: 10.29356/jmcs.v64i3.1152.
  • Pernas, S.; Tolaney, S. M. HER2-Positive Breast Cancer: new Therapeutic Frontiers and Overcoming Resistance. Ther. Adv. Med. Oncol. 2019, 11, 1758835919833519. DOI: 10.1177/1758835919833519.
  • Kütt, A.; Selberg, S.; Kaljurand, I.; Tshepelevitsh, S.; Heering, A.; Darnell, A.; Kaupmees, K.; Piirsalu, M.; Leito, I. pKa Values in Organic Chemistry–Making Maximum Use of the Available Data. Tetrahedron Lett. 2018, 59, 3738–3748. DOI: 10.1016/j.tetlet.2018.08.054.
  • Henderson, R. K.; Hill, A. P.; Redman, A. M.; Sneddon, H. F. Development of GSK's Acid and Base Selection Guides. Green Chem. 2015, 17, 945–949. DOI: 10.1039/C4GC01481B.
  • Shearouse, W. C.; Korte, C. M.; Mack, J. A Two-Step Ball Milling Method Synthesizes and Purifies a,b-Unsaturated Esters. Green Chem. 2011, 13, 598–601. DOI: 10.1039/c0gc00671h.
  • Baron, A.; Martinez, J.; Lamaty, F. Solvent-Free Synthesis of Unsaturated Amino Esters in a Ball-Mill. Tetrahedron Lett. 2010, 51, 6246–6249. DOI: 10.1016/j.tetlet.2010.09.069.
  • Busnena, B. A.; Foudah, A. I.; Melancon, T.; El Sayed, K. A. Olive Secoiridoids and Semisynthetic Bioisostere Analogues for the Control of Metastatic Breast Cancer. Bioorg. Med. Chem. 2013, 21, 2117–2127. DOI: 10.1016/j.bmc.2012.12.050.
  • Hu, L. H.; Zou, H. B.; Gong, J. X.; Li, H. B.; Yang, L. X.; Cheng, W.; Zhou, C. X.; Bai, H.; Gueritte, F.; Zhao, Y. Synthesis and Biological Evaluation of a Natural Ester Sintenin and Its Synthetic Analogues. J. Nat. Prod. 2005, 68, 342–348. DOI: 10.1021/np0496441.
  • Kovacevic, I.; Popsavin, M.; Benedekovic, G.; Kesic, J.; Kojic, V.; Jakimov, D.; Srdic-Rajic, T.; Bogdanovic, G.; Divjakovic, V.; Popsavin, V. Synthesis and in vitro antitumour activity of Crassalactone D, Its Stereoisomers and Novel Cinnamic Ester Derivatives. Eur. J. Med. Chem. 2017, 134, 293–303. DOI: 10.1016/j.ejmech.2017.03.088.
  • Rzepecka-Stojko, A.; Kabała-Dzik, A.; Moździerz, A.; Kubina, R.; Wojtyczka, R.; Stojko, R.; Dziedzic, A.; Jastrzębska-Stojko, Ż.; Jurzak, M.; Buszman, E.; Stojko, J. Caffeic Acid Phenethyl Ester and Ethanol Extract of Propolis Induce the Complementary Cytotoxic Effect on Triple-Negative Breast Cancer Cell Lines. Molecules 2015, 20, 9242–9262. DOI: 10.3390/molecules20059242.
  • Srivastava, N.; Singh, S.; Gupta, A. C.; Shanker, K.; Bawankule, D. U.; Luqman, S. Aromatic Ginger (Kaempferia galanga L.) Extracts with Ameliorative and Protective Potential as a Functional Food, beyond Its Flavor and Nutritional Benefits. Toxicol. Rep. 2019, 6, 521–528. DOI: 10.1016/j.toxrep.2019.05.014.
  • Ichwan, S. J.; Husin, A.; Suriyah, W. H.; Lestari, W.; Omar, M. N.; Kasmuri, A. R. (2019) Anti-Neoplastic Potential of Ethyl-p-Methoxycinnamate of Kaempferia Galanga on Oral Cancer Cell Lines. Mater. Today Proc. 2019, 16, 2115–2121. DOI: 10.1016/j.matpr.2019.06.100.
  • Umar, M. I.; Iqbal, M. A.; Ahamed, M. B. K.; Altaf, R.; Hassan, L. E. A.; Haque, R. A.; Majeed, A. A.; Asmawi, M. Z. Cytotoxic and Pro-Apoptotic Properties of Ethyl-P-Methoxycinnamate and Its Hydrophilic Derivative potassium-P-Methoxycinnamate. Chem. Afr. 2018, 1, 87–95. DOI: 10.1007/s42250-018-0010-z.
  • Brown, N. Bioisosteres and Scaffold Hopping in Medicinal Chemistry. Mol. Inform. 2014, 33, 458–462. DOI: 10.1002/minf.201400037.
  • Langdon, S. R.; Ertl, P.; Brown, N. Bioisosteric Replacement and Scaffold Hopping in Lead Generation and Optimization. Mol. Inform. 2010, 29, 366–385. DOI: 10.1002/minf.201000019.
  • Lagunin, A. A.; Dubovskaja, V. I.; Rudik, A. V.; Pogodin, P. V.; Druzhilovskiy, D. S.; Gloriozova, T. A.; Filimonov, D. A.; Sastry, N. G.; Poroikov, V. V. CLC-Pred: A Freely Available Web-Service for in Silico Prediction of Human Cell Line Cytotoxicity for Drug-like Compounds. PLoS One. 2018, 13, e0191838. DOI: 10.1371/journal.pone.0191838.
  • Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug. Del. Rev. 1997, 23, 3–25. DOI: 10.1016/S0169-409X(96)00423-1.
  • Veber, D. F.; Johnson, S. R.; Cheng, H.-Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. DOI: 10.1021/jm020017n.
  • Molinspiration Property Engine. [v2018.10b]. https://www.molinspiration.com/cgi-bin/properties (accessed Aug 5, 2021).
  • Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods. 1983, 65, 55–63. DOI: 10.1016/0022-1759(83)90303-4.
  • Omar, M. N.; Rahman, S.; Ichwan, S.; Hasali, N.; Rasid, F. A.; Halim, F. A. Cytotoxicity Effects of Extracts and Essential Oil of Kaempferia Galanga on Cervical Cancer C33A Cell Line. Orient. J. Chem. 2017, 33, 1659–1664. DOI: 10.13005/ojc/330409.
  • Mikolajczyk, M. Horner-Wittig Reactions in a Two-Phase System in the Absence of a Typical Phase-Transfer Catalyst. Synthesis 1976, 6, 396–398. DOI: 10.1055/s-1976-24055.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.